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ABSTRACT:
This paper proposes a propagation model to calculate the three-dimensional (3-D) sound scattering from transversely

symmetric sea surface waves in both deep and shallow water using the equivalent source method (ESM). The 3-D

sound field is calculated by integrating an assembly of two-dimensional (2-D) transformed fields with different out-

of-plane wavenumbers through a cosine transform. Each 2-D solution is calculated using the ESM incorporating a

complex image method that can efficiently and accurately solve the 2-D water/seabed Green’s function. The oscilla-

tory cosine integral is accurately calculated using a segmented integral scheme requiring relatively few 2-D solu-

tions, which can be further improved through the use of parallel computation. The model is validated by comparison

with a 3-D Helmholtz-Kirchhoff method for deep water and a finite element method for a shallow water wedge with

both a fluid and an elastic seabed. The model is as accurate as the finite element approach but more numerically

efficient, which enables Monte Carlo simulations to be performed for random rough surfaces in order to study the

scattering effects at a reasonable computational cost. Also, 3-D pulse propagation in the shallow water wedge is

demonstrated to understand the out-of-plane scattering effects further. VC 2020 Acoustical Society of America.
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I. INTRODUCTION

Recent years have seen increased concern about the

effects of man-made underwater noise on marine fauna.

Due to the gradual increase of maritime traffic, underwater

radiated noise (URN) emitted by vessels has become a

major man-made contribution to ambient noise. This poten-

tially poses a threat to marine fauna (Nowacek et al., 2001;

Lusseau et al., 2009). In order to mitigate such man-made

underwater noise, it is crucial to assess the URN from ves-

sels. However, the precision and reliability of URN mea-

surements for vessels can be strongly influenced by

uncertainties related to the ocean environment (Mullor

et al., 2013). One of these uncertainties is the scattering

effects owing to the rough sea surface that tend to play an

important role in the frequency region above 1000 Hz

(Audoly and Meyer, 2017).

In order to investigate and determine this uncertainty,

an appropriate propagation model is required. Since the

propagation range of interest for URN measurements is rela-

tively short (Rodr�ıguez et al., 2015), the model needs to be

accurate at short ranges. Additionally, the frequency range

of interest from 10 Hz to 10 kHz implies the model should

be numerically efficient. Rough surfaces have been consid-

ered in many two-dimensional (2-D) propagation models by

assuming that the environment is axisymmetric (Collins

et al., 1995; Rosenberg, 1999; Thorsos et al., 2004).

However, the out-of-plane scattering is not included in these

2-D models, which means these models are unrealistic. To

deal with more realistic scenarios, a three-dimensional (3-D)

propagation model is needed, enabled by an approximate

normal mode/parabolic equation hybrid model (Ballard,

2013; Ballard et al., 2015). A study related to such a 3-D

propagation model under a rough surface was carried out by

Ballard (2013), showing that 3-D effects are essential in the

direction perpendicular to the wind forcing. Although the

energy scattered out-of-plane can be taken into account in

this model, the azimuthal mode coupling is still absent, and

the multiple-scattering is ignored. In addition, small range

and azimuthal step sizes are required in order to obtain a

good convergence for suddenly changing environments

(such as a surface with large gradient) or for high frequen-

cies, intensifying the computational load required to imple-

ment the model.

Apart from these classic models, the finite element

method (FEM) has been extensively used for underwater

acoustics (Isakson and Chotiros, 2011, 2014; Isakson et al.,
2014; Simon et al., 2018). The advantage of the FEM is that

it offers a full-wave solution containing all order scattering,

even at a fairly short propagation range. Unfortunately, the
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FEM is numerically expensive, making a fully 3-D FEM

solution impractical. However, a single-direction surface

wave assumption can be made when studying the effect of

surface scattering on URN measurements. Such an assump-

tion provides a good approximation to the situation when

the water surface waves have a relatively narrow angular

spectrum so that the waves have a large correlation length in

the transverse direction. Studies under the same assumption

can be found in some 3-D propagation models associated

with surfaces composed of straight sinusoidal waveforms

(Welton, 2012; Smith, 2012; Choo et al., 2016). Based on

this assumption, the 3-D FEM solution can be obtained

through the integration of a set of 2-D solutions owing to the

transversely symmetric environment (Isakson et al., 2014).

Although the computational efficiency is improved by trans-

forming the 3-D Helmholtz equation into 2-D, this model is

suitable for a single implementation rather than for the mul-

tiple implementations required to investigate rough scatter-

ing. Repeatedly performing meshing and roughness

realisations make this model time-consuming. Furthermore,

a very large digital data storage space is required to save

each component of the FE solutions, and the computational

load increases rapidly as the frequency increases.

This paper proposes an equivalent source method-based

transversely symmetric propagation model (ESM-TSM) to

calculate the 3-D sound scattering from transversely sym-

metric sea surface waves in both deep water with no seabed

reflections and in shallow water. The ESM-TSM assumes

that the water surface waves only vary in one direction, and

the seabed is allowed to slope in the same direction. A set of

2-D components corresponding to different out-of-plane

wavenumbers are efficiently calculated by the ESM in paral-

lel and then integrated through a cosine transform to obtain

the 3-D field. In each 2-D solution, the sound field is the

superposition of the incident field generated by the source

plus the scattering field generated by a set of equivalent

sources above the sea surface. The unknown strengths of the

equivalent sources are then obtained by solving the inverse

problem based on the boundary condition on the sea surface.

For the case of shallow water, a complex image method

(Fawcett, 2000) is used to calculate the water/seabed

Green’s function accurately. The oscillatory cosine integral

is treated through a segmented integral based on the fast

construction of the Clenshaw-Curtis Quadrature rules

(Waldvogel, 2006) to achieve a good convergence using

fewer 2-D solutions. The ESM-TSM has similar accuracy to

the FEM, and the sea surface can be arbitrarily rough.

Besides, an acceptable computational cost is needed to per-

form the multiple implementations required for studying the

surface scattering since arbitrary field points can be calcu-

lated once the strengths of equivalent sources are deter-

mined. The ESM-TSM has been validated in this paper by

comparisons with a 3-D Helmholtz integral method for the

case of deep water and a FE model for the case of a shallow

water wedge with both a fluid and an elastic seabed. The

parameter selection for the segmented integral scheme is

discussed, and a 3-D pulse propagation is demonstrated to

understand the out-of-plane scattering effect further. The

paper is organised as follows: Sec. II presents the formulae

of the ESM-TSM, while Sec. III presents numerical results

and discussions. Finally, the conclusion will be presented in

Sec. IV.

II. AN EQUIVALENT SOURCE METHOD-BASED
TRANSVERSELY SYMMETRIC PROPAGATION MODEL

The key aspect of the transversely symmetric propaga-

tion model approach taken is that 3-D field of a monopole

source is modelled by considering an integral over a number

of 2-D transformed fields for which the source will be a line

source. For this, the waveguide geometry depends on the x�
and z� directions. The ESM-TSM is easy to implement

numerically compared with the Helmholtz integral method

since it avoids the integrable singularity (Koopmann et al.,
1989). Also, the computational efficiency is higher than the

FE model when large scale models or Monte Carlo simula-

tions are required owing to the avoidance of repeat meshing.

Furthermore, the surface roughness can be arbitrary in this

model. The implementation of the ESM-TSM can be split

into two steps: first the 2-D transformed scattering fields for

different out-of-plane wavenumbers are calculated using the

ESM, and then the 3-D scattering field is obtained through a

cosine transform.

A. Two-dimensional transformed field based on the
equivalent source method

As shown in Fig. 1, a line source is submerged in the

ocean with a randomly rough surface waves. The water col-

umn is iso-velocity with a sound speed of c1 and density of

q1. The 2-D field in water can be considered as the incident

field generated by the line source plus the scattered field that

is the superposition of N equivalent line sources above the

location of the rough surface. The incident field on the rough

surface, generated by the line source, is given by

pinc2DðrC; rsjkyÞ ¼ 4pGðrC; rsjkyÞ; (1)

where rs and rC are the position vectors of the source and

the point on the 1-D rough surface and GðrC; rsjkyÞ is the

2-D Green’s function at the field point rC for an out-of-plane

wavenumber ky. For the case of deep water where the reflec-

tion from the seabed can be ignored, the 2-D Green’s func-

tion is given by

GðrC; rsjkyÞ ¼
i

4
H
ð1Þ
0 ðk2DjrC � rsjÞ; (2)

where H
ð1Þ
0 is the first-class Hankel function of zero-order

and k2D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk2

1 � k2
yÞ

q
is the 2-D transformed wavenumber

in water with k1 ¼ x=c1, where x is the angular frequency.

Similarly, the scattered field on the rough surface can be

written as
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ps2DðrC; rsjkyÞ ¼
XN

n¼1

unGðrC; rnjkyÞ; (3)

where rn and un are the position vector and the strength of

the nth equivalent source.

The incident and scattered field satisfy the boundary

condition on the rough surface,

pinc2DðrC; rsjkyÞ þ ps2DðrC; rsjkyÞ ¼ 0: (4)

Consider M points on the rough surface, Eq. (4) then can be

written in matrix form as

GU ¼ �P; (5)

where G, the M�N transfer matrix of the scattered field,

has the form of

G¼

GðrC1;r1jkyÞ GðrC1;r2jkyÞ ��� GðrC1;rN jkyÞ

GðrC2;r1jkyÞ GðrC2;r2jkyÞ ��� GðrC2;rN jkyÞ

..

. ..
. . .

. ..
.

GðrCM;r1jkyÞ GðrCM;r2jkyÞ ��� GðrCM;rNjkyÞ

0
BBBBBBB@

1
CCCCCCCA
;

(6)

where rCm (m ¼ 1; 2;…;M) is the position of the mth

point on the rough surface, U is a N � 1 unknown

source strength vector and P is the pressure vector for

the incident field on the 1-D rough surface with the

size of M � 1. By solving the inverse problem of Eq.

(5), the unknown source strength vector can be

obtained. In order to solve the inversion of matrix G,

sufficient samplings of the pressure on the rough sur-

face are required. In this work, the number of equiva-

lent sources was set to be the same as the pressure

samples, which means that the exact solution for the

source strengths could be efficiently determined by

using the matrix division function in MATLAB.

Otherwise, Tikhonov (Golub et al., 1999) or other reg-

ularisation methods (Pereira et al., 2015) need to be

used when the number of equivalent sources is not

equal to the number of pressure samples. The default

equivalent source configuration was set to be a confor-

mal line one-quarter-acoustic wavelength above the

rough surface with five sources per acoustic wave-

length unless specified. This assures the accuracy of

the ESM since the spatial Nyquist criterion (Holland

and Nelson, 2013) is satisfied. A detailed discussion of

the influence of N on the accuracy can be found in

Appendix A.

Thus, the 2-D scattered field at r in water can be calcu-

lated by

ps2Dðr; rsjkyÞ2D ¼
XN

n¼1

unGðr; rnjkyÞ: (7)

B. 2-D half-space Green’s function for the shallow
water case

For the case of shallow water, the Green’s function

needs to be replaced by that for a half-space with two homo-

geneous layers. The method of complex images (Fawcett,

2000) is employed to calculate such a half-space Green’s

function, which has been used widely in electromagnetics

(Yang and Chow, 1991) and underwater acoustics (Fawcett,

2003). The advantage of the complex image method is that

once the amplitudes and complex positions of images are

determined for a zero value of ky, the Green’s function for

arbitrary ky can be obtained using these image configura-

tions. In addition, only a few orders of complex images can

provide good convergence, which is numerically efficient.

Here, the seabed is allowed to slope in the same direc-

tion as the surface variation. Consider a two-layer half-space

shown in Fig. 2. The water/seabed interface is assumed to

be sloped with a slope angle h. A new coordinate system

(x0; z0) is introduced by rotating the original coordinate (x, z)

by h (Deane and Buckingham, 1993), where

x0 ¼ x

cos h
þ ðz� x tan hÞ sin h;

z0 ¼ ðz� x tan hÞ cos h;

8<
: (8)

with the water/seabed interface defined as z0 ¼ 0. Based on

the complex image method, the Green’s function for a

field point (x0r; z0r) due to a line source at (x0s; z0s) above the

FIG. 1. The scheme of the equivalent source method for a 2-D rough sur-

face in a deep water environment.

FIG. 2. The rotated coordinate system for the two-layer space with a slop-

ing interference.
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half-space can be represented as the wavenumber integral

expression

Gðr0r; r0sÞ ¼
i

4
H
ð1Þ
0 ðk1jr0r � r0sjÞ

þ 1

p

ð1
0

RðhÞ e
ic1ðz0rþz0sÞ

2ic1

cos ðhjx0r � x0sjÞdh;

(9)

where r0r; r0s are the position vectors of the receiver and

source, and jr0r � r0sj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx0r � x0sÞ

2 þ ðz0r � z0sÞ
2

q
. Here, h is

the horizontal wavenumber, c1ðhÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk2

1 � h2Þ
p

is the ver-

tical wavenumber in water, and R(h) is the water/sea inter-

face reflection coefficient given by

RðhÞ ¼ q2WðhÞc1ðhÞ � q1c2ðhÞ
q2WðhÞc1ðhÞ þ q1c2ðhÞ

; (10)

where q2 is the density of the seabed and c2ðhÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk2

2 � h2Þ
p

is the vertical wavenumber in the seabed with k2 ¼ x=c2 and

a sound speed of the seabed c2. For a fluid seabed WðhÞ � 1.

For an elastic seabed, WðhÞ is given by (Fawcett, 2000)

WðhÞ ¼ ð1� 2h2=bÞ2 þ 4c2ðhÞh2csðhÞ=b2; (11)

where b ¼ ðx=csÞ2 and csðhÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb� h2Þ

p
is the shear ver-

tical wavenumber in the seabed with a shear speed cs.

The integral in Eq. (9) represents the reflected field in

the upper half-space. The field generated by a line source at

ðx0q; z0qÞ can also be written as the wavenumber integral

expression

i

4
H
ð1Þ
0 ðk1jr0r � r0qjÞ ¼

1

p

ð1
0

eic1ðz0r�z0qÞ

2ic1

cos ðhjx0r � x0qjÞdh:

(12)

Consider z0q ¼ �z0s þ iaq and x0q ¼ x0s, and the field generated

by Q such line sources, then it follows that

XQ

q¼0

aq
i

4
H
ð1Þ
0 ðk1jr0r � r0qjÞ

¼ 1

p

ð1
0

XQ

q¼0

aqec1aq

2
4

3
5 eic1ðz0rþz0sÞ

2ic1

cos ðhjx0r � x0qjÞdh;

(13)

where aq is the amplitude of each source. If the parameters

aq and aq are determined by

XQ

q¼0

aqec1ðhÞaq � RðhÞ; (14)

the reflected field in Eq. (9) then can be replaced by

Grðr0r; r0sÞ ¼
XQ

q¼0

aq
i

4
H
ð1Þ
0 ðk1jr0r � r0sqjÞ; (15)

where r0sq is the position vector of the complex image and

jr0r � r0sqj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx0r � x0sÞ

2 þ ðz0r þ z0s � iaqÞ2
q

. The exponential

fit can be solved by a Levenberg-Marquard method based on

Eq. (14). In order to correct the singular behaviour of the

Green’s function for source and receiver points near the sea-

bed, the asymptotic term with the singularity in the R(h)

should be removed while performing the fit using Eq. (14).

For a fluid sea bed, only one asymptotic term R1
¼ ðq2 � q1Þ=ðq2 þ q1Þ should be subtracted. For an elastic

seabed, R1 ¼ 1 and one additional singularity correspond-

ing to the Scholte wave should be removed. Here, the expo-

nential fit for an elastic seabed follows a two-step procedure

proposed by Fawcett (2000). First, the Scholte pole is deter-

mined by a Newton root-finding method for the zero denom-

inator of Eq. (10), and then the parameters of exponential

terms can be determined by fitting the reflection coefficient

with only R1 subtracted. The exponential fit is implemented

through a weighted fit giving less weighting when h
approaches the Scholte pole. Due to the subtraction of the

Scholte pole, the residue at this pole should be taken into

account. However, this term, which represents the Scholte

wave propagating mainly along with the interface, is only

significant when both the source and receiver approach the

water/seabed interface and therefore is neglected in this

paper.

Once the amplitudes and complex positions of images

are determined for k1 (ky¼ 0), the half-space Green’s function

for arbitrary out-of-plane wavenumbers ky can be given by

Gðr0r; r0sjkyÞ ¼
i

4

�
H
ð1Þ
0 ðk2Djr0r � r0sjÞ

þ
XQ

q¼0

aqH
ð1Þ
0 ðk2Djr0r � r0sqjÞ

�
; (16)

where a0 ¼ R1 and a0 ¼ 0. For a general fluid seabed, 4

exponentials are sufficient to fit their reflection coefficient

(Fawcett, 2000). However, for the elastic seabed, more

terms are needed particularly when the shear speed is large.

Therefore, six exponentials are used to calculate the half-

space Green’s function through Eq. (16) in this paper.

C. Three-dimensional solution of the scattered field

When the 2-D rough surface only depends on x, the 3-D

scattering field for a point source can be calculated by inte-

grating the 2-D transformed scattered field using the integral

ps3Dðx; y; zÞ ¼
ðkymax

0

ps2Dðrðx; zÞ; rsjkyÞ cos ðkyyÞdky;

(17)

where kymax is the maximum of the out-of-plane wavenum-

bers that is chosen as 1.2 times k. Clearly, the integral in Eq.

(17) has an oscillatory nature, especially for a non-zero

transverse range y. Isakson et al. (2014) proposed a discreti-

zation scheme in ky based on a slightly offset gamma
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cumulative distribution function (CDF) to evaluate the inte-

gral. The CDF discretization gives finer sampling where the

kernel is highly oscillatory, so a robust result can be

achieved efficiently. However, when a non-zero transverse

range y is considered, the cos ðkyyÞ term becomes oscilla-

tory, which still requires an impractical number of sampling

points for the CDF discretization. A segmented integral

scheme that combines the CDF discretization and the fast

construction of the Clenshaw-Curits Quadrature rules

(Waldvogel, 2006) is used alternatively to calculate the inte-

gral in this paper. First, the CDF discretization scheme is

used to divide the integral into p subintervals, which enables

smaller subintervals for the region where the kernel is more

highly oscillatory,

ðkymax

0

ð•Þ ¼
ðb1

0

ð•ÞCDF þ
ðb2

b1

ð•ÞCDF þ � � �
ðkymax

bp�1

ð•ÞCDF:

(18)

Then, the variables ky need to be discretized based on

quadrature nodes within each subinterval ½bj; bjþ1� (j ¼ 0; 1;
…; p� 1),

kyi ¼
ðti þ 1Þðbjþ1 � bjÞ

2
þ bj; (19)

where ti is the quadrature node on the interval ½�1; 1�,

ti ¼ cos#i; #i ¼ i
p
l
; i ¼ 0; 1;…; l: (20)

The sub-integral then can be transformed into a quadra-

ture weighted sum

ðbjþ1

bj

ð•ÞCDF¼
bjþ1�bj

2

Xl

i¼0

wips2Dðrðx;zÞ;rsjkyiÞcosðkyiyÞ;

(21)

where wi are the quadrature weights that can be calculated

using the fast Fourier transform as shown by Waldvogel

(2006). In addition, by solving for the 2-D transformed

fields in parallel, the numerical efficiency can be further

improved. This can be implemented using the parfor com-

mand of the MATLAB parallel computing toolbox.

III. NUMERICAL RESULTS AND DISCUSSION

A. Three-dimensional scattered field in deep water

First, the ESM-TSM was validated for a deep water

environment to check the out-of-plane scattering effects by

comparison with a 3-D Helmholtz-Kirchhoff method. Here,

the 3-D reflection from a corrugated surface wave was con-

sidered. All the simulation parameters were the same as in

the work of Choo et al. (2016), with a source placed at a

depth of 20 m for a frequency of 20 kHz. The sound speed in

the water was 1500 m/s. The wave height and wavelength of

the corrugated surface were 1.5 and 40 m, respectively.

In the work of Choo et al. (2016), the 3-D sound reflection

is observed owing to out-of-plane scattering from the longi-

tudinal variation sea surface. This can be demonstrated

through the focusing and caustic patterns observed in an

oblique plane from x-axis with an azimuth angle of 45�. In

our case, the scattered field in the same oblique plane was

calculated. 18 000 2-D transformed fields were evaluated to

perform the ESM-TSM. The local section of the scattered

field from the depth of 0 to 30 m was calculated by the

ESM-TSM, and it can be seen in Fig. 3(a) that similar focus-

ing and caustic patterns arise. The excellent agreement of

the scattered fields obtained by the two approaches can also

be seen in Fig. 3(b) where the pressure level for a receiver

depth of 20 m is shown as a function of range, thus demon-

strating that the out-of-plane scattering is captured accu-

rately by the ESM-TSM. Here, it should be noticed that the

3-D Helmholtz-Kirchhoff method is numerically efficient

for the high-frequency problem since it utilises the analyti-

cal free-space Green’s function and the stationary phase

approximation. This approach is suitable for deep water.

Furthermore, the accuracy of the low-frequency problem

cannot be guaranteed because of the violation of the

Kirchhoff approximation. Although more computational

load is required to handle a high-frequency problem, the

proposed model is accurate in any frequency region. In addi-

tion, the proposed model can be extended to shallow water.

B. Three-dimensional scattered field in a shallow
water wedge

1. Parameters set-up

A shallow water wedge, as shown in Fig. 4(a), was then

considered with both a fluid and an elastic seabed. The sim-

ulation parameters are given in Table I. The 2-D

FIG. 3. (Color online) (a) The section of the sound field pressure level (in

dB), for depths up 30 m, in an oblique plane with an azimuth angle of 45�

to the x-axis. (b) Comparison of the scattered fields from corrugated surface

waves calculated by the 3-D Helmholtz-Kirchhoff method and ESM-TSM

in the same oblique plane for a receiver depth of 20 m.
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transversely symmetric sea surface was characterised by the

Pierson/Moskowitz spectrum (Thorsos, 1990), which has a

root mean square wave height of 2.13 m (Thorsos, 1990)

and a correlation length of approximately 100 m for the

default wind speed of 20 m/s used in the simulations. A lon-

gitudinally invariant finite element (LIFE) model (Isakson

et al., 2014) was adopted here as a benchmark. The 3-D

solution was obtained by integrating over 2-D FE solutions

with different out-of-plane wavenumbers. For each 2-D FE

solution, both the water and the sediment domain were com-

posed of triangular meshes with the maximum element size

of 1/6 acoustic wavelength. In contrast, the elements in the

rough surface region, around water/seabed interface and the

source position were ten times denser (Isakson and Chotiros,

2011; Qing et al., 2019). The physical domain was truncated

by a perfectly matched layer which was composed of a map-

ping mesh of ten layers. For the case of the elastic seabed,

the acoustic-solid interaction module was used to couple the

acoustic pressure and the solid mechanics domains and

establish the acoustic-solid boundary. The geometry and

mesh for 2-D FE model can be seen in Fig. 4(b). For both

the LIFE model and the ESM-TSM, the segmented integra-

tion scheme was performed with 2048 evaluations of 2-D

components divided into eight subintervals. In each subin-

terval, 256 Chebyshev quadrature nodes are required. The

suggested parameters for the segmented integral scheme are

discussed in Appendix B which also shows a comparison

between the proposed segmented integral scheme and the

CDF scheme. It should be noted that, for the calculation at

200 Hz, the LIFE model used 31.7 GB disk space to store all

the FE solutions and took 5.5 h to compute the solutions

using a laptop with i7 8750H CPU and 16 GB of RAM,

while the ESM-TSM did not need to save each 2-D solution

individually, and only took 4 min to solve for the source

strengths of the equivalent sources. The sound field at an

arbitrary position was then easily obtained.

2. Results for the fluid seabed case

First, the fluid seabed scenario was considered. Before

calculating the sound field above the fluid seabed, it is nec-

essary to check the accuracy of the water-seabed Green’s

function by comparing the reflection coefficient with that

obtained from the fitted exponentials. Figure 5 shows the

comparison of the exact solution with that obtained from a

six term fit at 200 Hz, with the asymptotic term subtracted

off. A good agreement between the two results can be seen,

indicating that the Green’s function calculated by the

method of complex images is accurate.

Then, Fig. 6(a) shows a 3-D view of the transmission

loss (TL) in five vertical planes at y¼ 0, 500, 1000, 1500,

and 2000 m and in the horizontal plane for a receiver depth

of 40 m at 200 Hz. In the vertical planes, modal cut-off

behaviour and scattering features can be seen. The change

of the interference pattern along the y-axis indicates the

presence of the out-of-plane scattering. Since the transmis-

sion into the sediment is absent in the Green’s function, the

sediment field is not shown in Fig. 6(a). However, it is pos-

sible to extend ESM-TSM to the sediment field by introduc-

ing the transmission coefficient or by calculating the

Green’s function using other methods. Figure 6(b) plots the

horizontal plane shown in the 3-D plot. Clear interference

FIG. 4. (Color online) (a) The diagram

of the shallow water wedge under

transversely symmetric waves and

with a sloping seabed angle of 2.86�.
(b) The geometry for the 2-D FE

model of the shallow water wedge

with subplots displaying details of

meshes of the sea surface, seabed

boundary and the perfectly matched

layer.

TABLE I. Shallow water wedge parameters.

Parameter Value

Water depth (in the source plane) 100 m

Slope angle 2:86�

Source depth 4 m

Water density 1024 kg=m3

Water sound speed 1500 m/s

Seabed denstiy 1941 kg=m3

Seabed compressional speed 1749 m/s

Compressional wave attenuation 0.9 dB/k
Seabed shear speed (elastic seabed) 800 m/s

Shear wave attenuation (elastic seabed) 0.4 dB/k
Wind speed 20 m/s
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patterns can be observed for spatial regions far away from

the source, with the apparent “elongated” scattering features

due to the interaction with sound scattered from the surface

roughness. Such a focusing phenomenon can be seen by

Smith (2012) and Choo et al. (2016).

Figures 7(a) and 7(b) compare the TLs calculated using

the LIFE model and the ESM-TSM for a receiver depth of

40 m in the y¼ 0 m plane and in an oblique plane with an

azimuth angle of 45� to the x-axis. Excellent agreement

between the LIFE model and the ESM-TSM can be seen

overall. The root mean square difference of less than 0.2 dB

over the whole range for the planes shown indicates the

accuracy of the ESM-TSM.

3. Results for the elastic seabed case

Unlike the fluid seabed, the exponential fit for the elas-

tic seabed is more complicated due to the presence of the

Scholte pole. Although a weighted fit proposed by Fawcett

(2000) is utilised here to improve the robustness, the fitted

result is still strongly affected by initial values selected for

the nonlinear fit. In this paper, the initial values were set

equal to the fitted parameters for the fluid scenario with the

same compressional speed and density. Figure 8 shows a

comparison of the exact reflection coefficient with the

results of the fitted exponential method using the fluid fit

parameters as the initial values at 200 Hz. Similar results

using zeroes as the initial values are also shown. Apparent

singularities can be seen in the exact reflection coefficient,

with the most significant peak representing the Scholte pole.

By selecting the fluid fit parameters as the initial values, the

reflection coefficient result agrees with the exact solution

very well for low wavenumber and passes smoothly through

the Scholte pole. In contrast, the result of the fit using zeroes

FIG. 5. (Color online) Reflection coefficient modulus for a fluid seabed as a

function of wavenumber normalised by x=1500 (black densely dotted line)

compared with the exacted reflection coefficient (blue solid line) at 200 Hz.

The asymptotic term has been substracted off.

FIG. 6. (Color online) (a) A 3-D view of the propagation in the shallow

water wedge for 200 Hz calculated by the ESM-TSM with a horizontal slice

for a receiver depth of 40 m and five vertical slices at y¼ 0, 500, 1000,

1500, 2000 m. (b) Sound field calculated by the ESM-TSM in the horizontal

plane at a depth of 40 m. The source depth is 4 m.

FIG. 7. (Color online) Comparison of the TL calculated by the LIFE mod-

el(black solid line) and the ESM-TSM (red dashed line) in (a) the y¼ 0 m

plane, (b) an oblique plane with an azimuth angle of 45� to the x-axis, for a

receiver depth of 40 m at 200 Hz.

FIG. 8. (Color online) The comparisons of the exact reflection coefficient

for an elastic seabed (blue solid line) with the results of the fitted exponen-

tial method using the fluid fitted parameters (red dashed line) and zeroes

(black densely dotted) as the initial values at 200 Hz.
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as initial values shows an oscillatory fluctuation through the

Scholte pole. This means that a more accurate and robust fit

can be obtained by the fluid fit parameters as the initial

values.

The TL was calculated in the same oblique plane and

receiver depth, as shown in Fig. 7(b) for the case of an

elastic seabed. The excellent agreement with the LIFE

model, shown in Fig. 9, confirms the accuracy of the ESM-

TSM for an elastic seabed. A comparison between the case

of fluid and elastic seabed for the TL in the y¼ 0 plane is

shown in Fig. 10(a). The elastic seabed results in greater

TL, especially after 400 m, and this is due to the compres-

sional-to-shear wave conversion at the water/seabed inter-

face accompanied by the shear wave attenuation. This

greater loss can also be observed in the horizontal plane for

a receiver depth of 40 m in Fig. 10(b) by comparison with

that shown in Fig. 6(b).

4. Ensemble averaging study

In order to demonstrate the effects of the rough scatter-

ing, ensemble average fields for three different wind speeds

(10, 15, and 20 m/s) were calculated by performing 50 dif-

ferent implementations of the rough surface for each wind

speed at 200 Hz. In this section, only the fluid seabed was

considered and the coherent and incoherent field are

defined by

pcoh ¼ jhpij;

pincoh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hjpj2i � jhpij2

q
;

8<
: (22)

where p is the sound pressure from each implementation

and h•i represents the ensemble average. In order to avoid

the situation that the source could be above rough surfaces

during the Monte Carlo simulations, the source was set to be

10 m below the surface in this case. Figure 11 illustrates the

coherent (upper row) and incoherent (lower row) field as a

function of x in the plane at y¼ 0 m, and as a function of y
in the plane at x¼ 0 m for a receiver depth of 40 m. In order

to display the effects of rough scattering, the flat surface sce-

nario is also given in the upper row of Fig. 11. It can be seen

that, as the wind speed increases, the coherent field overall

decreases by up to 10 dB, tending to show similar but

smaller fluctuations than those for a flat surface. The greater

surface roughness, driven by the higher wind speed, enhan-

ces the scattering, especially for situations where the wave-

length is smaller than the average wave height. The

coherent component can be considered as the lossy specular

reflection that reduces in amplitude as the scattering

becomes stronger. The non-specular reflection, on the other

hand, can be considered as the incoherent field, both in-

plane and out-of-plane. Therefore, the incoherent field will

show the opposite behaviour to the coherent field as the

wind speed increases, which can be observed in Fig. 11.

5. Pulse propagation in the shallow water wedge with
a rough surface and fluid seabed

The 3-D propagation of a pulse in the shallow water

with a transversely symmetric rough surface is demonstrable

and implementable owning to the high numerical efficiency

of the ESM-TSM. This helps explain how the out-of-plane

scattering arises and may be useful for modelling 3-D shal-

low water reverberation. The pulse propagation was investi-

gated in the shallow water wedge with the same parameters

as used in Sec. III B 2 for the source placed at a depth of

4 m. The time-domain solution was calculated using Fourier

synthesis. First, the frequency response was calculated for

each frequency, and then the inverse Fourier transform

was used to obtain the pulse response. In our case, the

source spectrum was centred at 250 Hz, covering the

FIG. 9. (Color online) Comparison of the TL calculated by the LIFE model

(black solid line) and the ESM-TSM (red dashed line) for an elastic seabed

and an oblique plane at an azimuth angle of 45� to the x-axis, for a receiver

depth of 40 m at 200 Hz.

FIG. 10. (Color online) (a) A sound field comparison between the case of

fluid seabed (upper plot) and elastic seabed (lower plot) in the y¼ 0 plane.

(b) Sound field in the horizontal plane at a depth of 40 m above an elastic

seabed.
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frequency range 210–290 Hz. A Tukey window was used as

the weighting function in the frequency domain. The fre-

quency interval was selected as c=2L, where L was the prop-

agation range. Figure 12 shows the pulse propagation within

600 m with three vertical planes (y ¼ 0, 300, and 600 m) and

a horizontal plane (z ¼ 10 m). The first bottom bounce scat-

tered by the surface can be seen at t ¼ 0:1477 s with the

apparent “elongated” pattern in the horizontal plane result-

ing from the transversely symmetric rough surface. This

demonstrates how sound is scattered out-of-plane. Similar

out-of-plane scattering occurs for subsequent times, caused

by the bottom-surface-bottom and bottom-surface-bottom-

surface-bottom bounce at t ¼ 0:2462 s and t ¼ 0:3446 s,

respectively. More details can be found in the movie

attached in the supplementary document.1

IV. CONCLUSIONS

This paper has demonstrated a propagation model capable

of calculating the 3-D scattering from transversely symmetric

rough surfaces in both shallow and deep water. The 3-D sound

field was obtained by integrating an assembly of 2-D trans-

formed fields with different out-of-plane wavenumbers through

a cosine transform. In each 2-D solution, the ESM has been

utilised, incorporating a 2-D complex image method under a

rotated coordinate system that is capable of calculating the

water/seabed half-space Green’s function accurately for shal-

low water wedges. A segmented integral scheme that combines

the CDF discretization and the Clenshaw-Curtis quadrature

rules is utilised to treat the oscillatory integral accurately using

relatively few 2-D solutions. The proposed method has been

validated by comparison with a 3-D Helmholtz-Kirchhoff

method for a deepwater case with a corrugated sea surface.

Simulations were also compared with a longitudinally invariant

finite element (LIFE) model in a shallow water wedge for both

a fluid and an elastic seabed; the results validate the accuracy

of the ESM-TSM. Initial Monte Carlo simulations have been

performed to demonstrate the versatility of the technique for

showing rough scattering effects. A 3-D pulse propagation has

also been demonstrated using the ESM-TSM in the shallow

water wedge to understand the out-of-scattering effect visually.

The main advantages of the demonstrated approach are high

numerical efficiency and easy numerical implementation;

desired field points can be calculated without solving the whole

physical domain, which enables the multiple implementations

required by studies of surface scattering to be performed at a

reasonable computational cost. This work can be further

applied to research on the rough surface scattering effect on

FIG. 11. (Color online) Ensemble averages of the fields for rough surfaces corresponding to wind speeds of 10 m/s (black dashed line), 15 m/s (blue densely

dotted line), and 20 m/s (red solid line) at 40 m depth in the: (a) y¼ 0 m plane, (b) x¼ 0 m plane at 200 Hz. The upper and lower plots show the coherent and

incoherent field, respectively. The field for a flat surface is shown as the green solid line that is absent in the lower row due to the zero incoherent field for

the flat surface scenario.
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URN measurements, and further studies will investigate the

extension of the model to a sound refractive medium.
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APPENDIX A: DETERMINATION OF THE NUMBER OF
EQUIVALENT SOURCES

The determination of the number of equivalents sources

is discussed in this appendix. To do this, the percentage

error has been defined using

Percentage Error ¼ jPLIFE � PESMj2
jPESMj2

� 100%; (A1)

where PLIFE and PESM were the pressure vectors calculated

using the LIFE and the proposed model along the same line

shown in Fig. 7(a), and j•j2 represents the two-norm of the

vectors. Figure 13 shows the percentage error as a function

of the ratio of the wavelength k to the element length D
between adjacent equivalent sources along the conformal

surface. It can be seen that the error rapidly reduces to

around 3:6% after the k/D ratio exceeds 3, which indicates

that both the sampling of the incident pressure on the sur-

face and the distribution of equivalent sources require at

least approximately three points per wavelength. This result

coincides with an equivalent of the Nyquist criterion for

sampling waveforms (Holland and Nelson, 2013). Also, this

indicates that the rule for determining the number of equiva-

lent sources in this paper is reasonable to ensure accuracy.

APPENDIX B: PARAMETER DETERMINATION FOR
THE SEGMENTED INTEGRAL SCHEME

The dependence of the integral accuracy on the seg-

mented integral parameters was investigated for the fluid

seabed scenario, and the results were compared with those

from the CDF discretisation scheme. The conclusions are

also appropriate to the elastic scenario. Both integral

schemes were evaluated for 2048 ky values. For the

FIG. 12. (Color online) Time evolution of pulse in the shallow water wedge with a rough surface. Times correspond to the following: (a) 0.1477 s, (b)

0.1969 s, (c) 0.2462 s, (d) 0.2954 s, (e) 0.3446 s, (f) 0.3938 s. The x-, y-, and z-axis represent the propagation range, transverse range and depth in m,

respectively.
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segmented integral scheme, the 2048 values of ky were

divided into 2, 8, or 32 subintervals, and correspondingly

there were 1024, 256, and 64 Chebyshev discretisation

points in each subinterval. Figure 14 shows the results from

the CDF scheme and the segmented integral schemes with

different subintervals in the x¼ 0 m plane for a receiver

depth of 40 m. It can be seen that the CDF scheme provides

the worst convergence once the transverse range exceeds

600 m, while the segmented integral schemes show better

performance with the smoothest result obtained by dividing

ky into eight subintervals. This indicates the effectiveness of

the segmented integral scheme for large transverse range

propagation. Also, the result with two subintervals becomes

oscillatory after 1000 m, while that with 32 subintervals

remains stable until 1400 m but with significantly larger

fluctuations for further transverse ranges. It is known that

the Chebyshev quadrature nodes have a decreasing step

towards the boundaries of the intervals while the kernel con-

tains the main information and has oscillatory nature away

from the boundaries. Very small subintervals fail to capture

the main information of the kernel and therefore induce

some errors. On the other hand, insufficient quadrature

nodes in each subinterval cannot evaluate the integral cor-

rectly owing to the rapidly changing nature of the kernel.

This suggests that increasing the quadrature nodes is a pref-

erable approach to obtaining an accurate result with rela-

tively few kys rather than increasing the number of

subintervals. For instance, for more complicated kernels

(higher frequencies or more complicated environment

model), the number of subintervals can follow the robust

value of 8 used in this paper, but with more Chebyshev

quadrature nodes within each subinterval.

1See supplementary material at https://doi.org/10.1121/10.0001522 for

movies of the pulse propagation for both the rough surface and flat sur-

face scenarios.
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