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ABSTRACT:
This paper describes a shallow water range-dependent propagation model (RPM) based on the equivalent source

method (ESM). The proposed model allows both the sea surface and fluid seabed to vary with the propagation range.

The proposed equivalent source method-based range-dependent propagation model (ESM-RPM) utilizes three sets

of equivalent sources, placed above the sea surface, below the seabed, and above the seabed, which replace the sea

surface reflection, seabed reflection, and seabed transmission, respectively. The unknown strengths of the equivalent

sources can be determined by solving an inverse problem based on the boundary conditions. The capability of the

ESM-RPM for propagation in refractive water is demonstrated by evaluating the Green’s function using a modal

projection method. Numerical simulations are conducted in iso-velocity and refractive shallow water with an under-

water canyon and corrugated surface waves, including two-dimensional (2-D) propagation across the canyon and

three-dimensional (3-D) propagation along the canyon. Further simulations demonstrate the 2-D across-canyon and

3-D along-canyon propagations with random rough sea surfaces. The results show that the proposed ESM-RPM pro-

vides efficient, benchmark-quality numerical solutions that accurately capture the mode coupling associated with the

varying cross section of the waveguide. Thus, the model has great potential to be applied in benchmarking propaga-

tion in shallow water with the varying sea surface and seabed. VC 2021 Acoustical Society of America.
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I. INTRODUCTION

The modeling of propagation in shallow water has

received considerable interest because it is crucial to

underwater communication, localization, and navigation.

Classical theories, such as normal mode (Pekeris, 1948)

and wavenumber integral approaches (DiNapoli and

Deavenport, 1980), have been developed to deal with

propagation in idealized shallow water with parallel

boundaries. The boundaries of the real ocean, however,

are range dependent or even time dependent, for instance,

varying seabeds induced by changes in continental shelf

topography or moving rough sea surfaces driven by the

wind force. Mode-coupling effects associated with the

varying cross section of the waveguide have a significant

impact on the sound propagation in such complex environ-

ments, especially in the presence of the sound speed pro-

file (SSP), preventing classical theories from being used

directly. Therefore, an appropriate model, which is capa-

ble of accurately capturing the mode coupling, is required

to calculate the sound propagation in such complex

environments.

Coupled mode (CM) theory (Evans, 1983; Fawcett,

1992; McDonald, 1996) has been widely used to solve

range-dependent propagation problems. The basic idea of

the CM is to divide the range-dependent waveguide into

several range-independent local sections so that the field can

be separated in terms of local modes and their range-

dependent amplitudes. By satisfying the continuity of pres-

sure and normal particle velocity on the boundary between

each local section, the mode amplitudes can be solved

globally. The CM can be further extended to calculate

three-dimensional (3-D) propagation by incorporating the

horizontal refraction equation (Ballard, 2013; Ballard et al.,
2015). However, when dealing with high-frequency or

suddenly changing environments, the CM requires a large

number of modes or local sections to obtain good conver-

gence, which tends to intensify the computational load.

Additionally, the number of modes taken into account

should be treated very carefully when mode cutoff occurs.

Another applicable technique for range-dependent propaga-

tion is the parabolic equation (PE; Tappert, 1977), which

has been extensively used in underwater acoustics over the

past two decades. The technique uses a parabolic approxi-

mation to the Helmholtz equation, and then retains only the

outgoing wave component. Such a one-way solution pro-

vided by the PE technique is numerically efficient, making

it suitable for calculating 3-D scenarios (Lin et al., 2013;
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Sturm, 2016). However, the inherent phase errors in the

approximations restrict the angular range around the domi-

nant propagation direction. Further numerical effort is

required to obtain more wide-angled PE approximations

(Collins, 1989, 1993).

In recent years, there has been increasing use of the

finite element method (FEM) in underwater acoustics

(Isakson and Chotiros, 2011, 2014; Isakson et al., 2014;

Simon et al., 2018). The advantage of the FEM is its appli-

cability for arbitrary environments and ranges as it is

customizable and based on the Helmholtz equation without

any approximations. Hence, the FEM can be considered as

the benchmark for range-dependent propagation.

Nevertheless, the FEM is cumbersome because of its

meshing requirements, especially for the Monte Carlo

simulations required by studies related to rough scattering

from boundaries. Furthermore, the computational load

rapidly increases as the frequency increases. Several pieces

of literature have demonstrated the capability of the

spectral element method (SEM) for the underwater acoustic

propagation in the time-domain (Cristini and Komatitsch,

2012; Bottero et al., 2016; Bottero et al., 2018). The

SEM is based on a high-order piecewise polynomial

approximation of the weak formulation of the wave equa-

tion, providing a numerically efficient full-wave solution of

the wavefield. Nevertheless, the SEM still relies on meshing

that may restrict the size of the problem. Readers can find a

more comprehensive review of the modeling of underwater

acoustic propagation in the book written by Jensen et al.
(2011).

Apart from the above models, the capability of the

equivalent source method (ESM; Koopmann et al., 1989)

for propagation in shallow water with the varying seabed

(Abawi and Porter, 2007) or sea surface (He et al., 2020)

has been demonstrated. Initially, the ESM was developed to

calculate the field radiated from a complex radiator with the

basic idea of replacing the radiated field with a superposition

of fields generated by a set of equivalent sources within the

radiator. Equivalent sources are offset from their corre-

sponding boundaries, and their strengths can be solved by

satisfying the boundary condition at the surface of the radia-

tor. Therefore, the ESM can circumvent the inherent singu-

larities problem in the boundary element method (BEM),

and its numerical implementation is simple because the

bases are nodes rather than elements. Compared with the

FEM, the ESM-based models solve the boundary integral

problem instead of the whole physical domain and are,

therefore, more numerically efficient. Moreover, the ESM-

based models are, in theory, as accurate as the FEM. Such a

model provides a full-wave solution for the wavefield in

shallow water with a varying cross section. To the best of

our knowledge, no ESM-based propagation model in shal-

low water with both the varying sea surface and fluid seabed

has been developed yet. Moreover, none of the ESM-based

propagation models has taken sound speed variation into

account. The goals of this paper are to bridge these two gaps

and provide a benchmark-quality and numerically efficient

solution that is capable of accurately capturing the mode-

coupling induced by varying boundaries.

This paper proposes an equivalent source method-

based range-dependent propagation model (ESM-RPM) that

allows both the sea surface and fluid seabed to vary with the

propagation range. In the ESM-RPM, three sets of equivalent

sources with unknown strengths are placed above the sea sur-

face, below the seabed, and above the seabed to replace the sea

surface reflection, seabed reflection, and seabed transmission,

respectively. For a given incident field, the unknown source

strengths can be solved by satisfying the pressure-release con-

dition and continuity of pressure and normal displacement on

the sea surface and seabed. After determining the source

strengths, fields at arbitrary positions can be solved. To extend

the ESM-RPM to refractive water, the Green’s function for

refractive water is evaluated using a modal projection method,

incorporating the perfectly matched layers (PMLs) technique

(B�erenger 1994). The mode of the field in a refractive free-

space truncated by two PMLs is projected onto basic orthogo-

nal modes of the field in a waveguide bounded by the two

outer boundaries of the PMLs. Such a modal projection yields

a generalized matrix eigenvalue problem through which the

modal eigenvalues and eigenvectors can be solved. Numerical

simulations are first presented in shallow water with an under-

water canyon and corrugated surface waves. The model is vali-

dated by comparisons with a finite element (FE) model. The

sound field separation enabled by the ESM-RPM is applied to

provide insights into the scattering and refractive effects. To

demonstrate the effects of out-of-plane scattering, a cosine

transform of an assembly of 2-D fields is then performed to

calculate the 3-D propagation in the horizontal plane along the

canyon. Finally, both the 2-D across-canyon and 3-D along-

canyon propagations are calculated with random rough sea sur-

faces to show the versatility of the ESM-RPM for demonstrat-

ing the effects of scattering from random rough sea surfaces.

The remainder of this paper is organized as follows. Section II

describes the formulation of the ESM-RPM, and Sec. III

presents numerical results and discussion. Finally, the conclu-

sions to this study are summarized in Sec. IV.

II. METHOD

A. The 2-D ESM-based propagation model with the
varying sea surface and seabed

As shown in Fig. 1, consider the range-dependent shal-

low water with a sound speed and density of cw and qw in

the water column, respectively, and cs and qs in the seabed,

respectively. The subscripts w and s specify the water and

seabed layers, respectively. The Helmholtz equation govern-

ing the 2-D sound field pðrÞ in the waveguide is given by

r2 þ k2½ �pðrÞ ¼ 0; (1)

where r ¼ ðx; zÞ is the position vector, and k is the wave-

number that becomes kw ¼ x=cw in water and ks ¼ x=cs in

the seabed, and x is the angular frequency. The pressure-

release boundary condition at the sea surface and the
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continuity of pressure and displacement across the water/

seabed interface can be expressed as

pðraÞ ¼ 0;

pðrbÞ� ¼ pðrbÞþ;
uðrbÞ� ¼ uðrbÞþ;

8><
>: (2)

where ra and rb are the positions of the sea surface and sea-

bed boundary, respectively, and u is the normal displace-

ment at the water/seabed interface.

Then, consider the Helmoholtz equation for a line

source

r2 þ k2½ �Gðr; r0jkÞ ¼ dðr� r0Þ; (3)

where Gðr; r0jkÞ, the Green’s function at r due to the source

at r0, is given by

Gspðr; r0jkÞ ¼ i

4
H
ð1Þ
0 ðkjr� r0jÞ;

Guðr; r0jkÞ ¼ 1

qx2
n̂rGspðr; r0jkÞ;

8>><
>>: (4)

where the superscripts sp and u indicate that Gsp and Gu are

the pressure and normal displacement Green’s function,

respectively, n̂ represents the unit normal vector to the

boundary, and H
ð1Þ
0 is the first-class Hankel function of order

zero. For the normal displacement Green’s function, the

subscript of q will change accordingly with that of k. The

Green’s function is a fundamental solution of Eq. (3), auto-

matically satisfying the Sommerfeld radiation condition.

Because the basis functions given by Eq. (4) satisfy Eq. (1),

the solution of Eq. (1) can be constructed by the superposi-

tion of the basis functions. The ESM will express the solu-

tion of Eq. (1) by the superposition of the basis functions

given by Eq. (4) with the unknown coefficients of the basis

functions solved by imposing the boundary conditions

defined in Eq. (2).

To implement the ESM, the field in the waveguide is

first separated into four parts: the incident field due to the

source, the surface-reflected field pð0ÞðrÞ, the seabed-

reflected field pð1ÞðrÞ, and the seabed-transmitted field

pð2ÞðrÞ. Then, pð0ÞðrÞ; pð1ÞðrÞ, and pð2ÞðrÞ can be replaced

with fields generated by three sets of equivalent line sources

above the sea surface at rð0Þ and below and above the seabed

at rð1Þ and rð2Þ, respectively, as shown in Fig. 1. Here, the

subscripts 0, 1, and 2 specify the positions of the equivalent

sources and fields generated by the corresponding sources.

Assume that the number of each set of equivalent source is

N, pð0;1;2ÞðrÞ can be expressed as

pð0;1ÞðrÞ ¼
XN

n¼1

sð0;1ÞnGspðr; rð0;1ÞnjkwÞ;

pð2ÞðrÞ ¼
XN

n¼1

sð2ÞnGspðr; rð2ÞnjksÞ;

8>>>>><
>>>>>:

(5)

where the subscript n specifies the nth source placed at

rð0;1;2Þ, and sð0;1;2Þn is the strength of the nth source placed at

rð0;1;2Þ. For N field points, Eq. (5) can be expressed as the

matrix form

pð0;1ÞðrÞ ¼ Gspðr; rð0;1ÞjkwÞsð0;1Þ;
pð2ÞðrÞ ¼ Gspðr; rð2ÞjksÞsð2Þ;

(
(6)

where pð0;1;2Þ is the N � 1 pressure vector due to the equiva-

lent sources located at rð0;1;2Þ; sð0;1;2Þ is the N � 1 strength

vector of the equivalent sources located at rð0;1;2Þ, and

Gspðr; rð0;1ÞjkwÞ and Gspðr; rð2ÞjksÞ are the N�N transfer

matrices with the entries being Gspðrm; rð0;1ÞnjkwÞ and

Gspðrm; rð2ÞnjksÞ, respectively. Here, rm is the position of the

mth receiver. Similarly, the normal displacement vectors

uð0;1;2ÞðrÞ, containing N field points as a result of the equiva-

lent sources located at rð0;1;2Þ, are given by

uð0;1ÞðrÞ ¼ Guðr; rð0;1ÞjkwÞsð0;1Þ;
uð2ÞðrÞ ¼ Guðr; rð2ÞjksÞsð2Þ:

(
(7)

Then, by applying the boundary conditions given by

Eq. (2), one can obtain

pincðraÞ þGspðra;rð1ÞjkwÞsð1Þ ¼ �Gspðra; rð0ÞjkwÞsð0Þ;
pincðrbÞ þGspðrb; rð0ÞjkwÞsð0Þ þGspðrb; rð1ÞjkwÞsð1Þ
¼Gspðrb; rð2ÞjksÞsð2Þ;

uincðrbÞ þGuðrb; rð0ÞjkwÞsð0Þ þGuðrb;rð1ÞjkwÞsð1Þ
¼Guðrb;rð2ÞjksÞsð2Þ;

8>>>>>>><
>>>>>>>:

(8)

where pinc and uinc are the N � 1 incident pressure and nor-

mal displacement vectors at the boundaries due to the line

source. For iso-velocity water, the incident field resulting

from a line source placed at rs is given by

FIG. 1. (Color online) Scheme of the ESM-RPM with the three sets of blue,

red, and yellow solid circles above the sea surface, below the seabed, and

above the seabed, representing the equivalent sources generating surface

reflection, seabed reflection, and transmission, respectively.
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pincðr; rsÞ ¼ ipH
ð1Þ
0 kwjr� rsjð Þ; (9)

and uinc ¼ n̂rpinc=qwx2.

The N � 1 vector of unknown source strengths sð0;1;2Þ
can be solved by manipulating Eq. (8),

sð0Þ ¼ �J�Ksð1Þ;

sð1Þ ¼ MK� N½ ��1
O�MJ½ �;

sð2Þ ¼ R�Q� Psð1Þ;

8>><
>>: (10)

where

J ¼ Gspðra; rð0ÞjkwÞ�1
pincðraÞ;

K ¼ Gspðra; rð0ÞjkwÞ�1
Gspðra; rð1ÞjkwÞ;

L ¼ Guðrb; rð2ÞjksÞGspðrb; rð2ÞjksÞ�1;

M ¼ LGspðrb; rð0ÞjkwÞ �Guðrb; rð0ÞjkwÞ;
N ¼ LGspðrb; rð1ÞjkwÞ �Guðrb; rð1ÞjkwÞ;
O ¼ LpincðrbÞ � uincðrbÞ;
P ¼ Gspðrb; rð2ÞjksÞ�1½Gspðrb; rð0ÞjkwÞK

�Gspðrb; rð1ÞjkwÞ�;
Q ¼ Gspðrb; rð2ÞjksÞ�1

Gspðrb; rð0ÞjkwÞJ;
R ¼ Gspðrb; rð2ÞjksÞ�1

pincðrbÞ:

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

(11)

After solving the source strength vectors, the sound

field in the water column and seabed can be calculated using

pwðrÞ ¼ pincðrÞ þGspðr; rð0ÞjkwÞsð0Þ
þGspðr; rð1ÞjkwÞsð1Þ; r 2 water;

psðrÞ ¼ Gspðr; rð2ÞjksÞsð2Þ; r 2 sediment:

8><
>: (12)

Note that, although the field is first separated into four parts

for implementing the ESM-RPM, the surface-reflected and

seabed-reflected fields take the multiple interactions with the

seabed and sea surface into account, respectively, which means

that the ESM-RPM includes the multiple reflections. This is

because three equations involving the fields generated by differ-

ent sets of equivalent sources are coupled into a linear system

[Eq. (8)], and then the source strengths are solved globally by

satisfying three boundary conditions at the sea surface and

water/seabed interface. In addition, Appendix A gives the deri-

vation of the ESM-RPM for the multilayer seabed scenario.

B. Green’s function in refractive water using the
method of modal projection, incorporating PMLs

In reality, sound propagation is strongly influenced by

sound speed variations in shallow water. By replacing the

homogeneous free-space Green’s function with the refrac-

tive free-space Green’s function in ESM-RPM, depth-

dependent sound speed variations can be taken into account.

Here, the method of modal projection is used to incorporate

the PML technique for calculating the Green’s function in

refractive water. As shown in Fig. 2, the starting point is to

consider the harmonic acoustic pressure field in the free-

space bounded by a waveguide with two PMLs. The sound

speed c(z) in the waveguide is depth dependent, and two

Neumann boundary conditions are imposed at z¼ 0 and

z¼H. To establish the nonreflecting boundaries, two PMLs

extending from z¼ 0 to z¼ d and from z¼D to z¼H are

introduced to the depth-separated wave equation. The PMLs

are mathematically equivalent to a stretching of the complex

coordinates (B�erenger, 1994); that is,

ẑ ¼ zþ i

ðz

0

dðeÞde; (13)

where dðeÞ is the damping function and e is the dimensionless

coordinate with e ¼ ðd � zÞ=d and e ¼ ðz� DÞ=ðH � DÞ for

the upper and lower PMLs, respectively. Here, first- and

second-degree polynomial damping functions (PDF-1 and

PDF-2) are considered with mathematical expressions of

dðeÞ ¼ be and dðeÞ ¼ be2 (Singer and Turkel, 2004;

Rabinovich et al., 2010), respectively, where b is a positive

real damping coefficient, controlling the rate of damping.

From Eq. (13), one can easily obtain that dẑ ¼ ð1þ idðzÞÞdz.

The depth-separated wave equation can then be written as

1

sðzÞ
d

dz

1

sðzÞ
d/
dz

� �
þ x2

c2ðzÞ/ ¼ j2/; (14)

where s(z)¼ 1 for d< z < D, sðzÞ ¼ 1þ idðzÞ, otherwise,

and / and j are the eigenfunction and eigenvalue, respec-

tively. Next, / is projected onto a series of basis functions

selected by satisfying the two boundary conditions at z¼ 0

and z¼H,

/ ¼
XP�1

p¼0

vpwp;

wp ¼
ffiffiffiffi
2

H

r
sin

ðpþ 0:5Þpz

H

� �
;

8>>>><
>>>>:

(15)

FIG. 2. (Color online) Diagram of the refractive free-space truncated by

two PMLs, extending from z¼ 0 to z¼ d and from z¼D to z¼H.
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where P and the subscript p are the total number and the

order of basis modes, respectively, and vp is the projection

coefficient. Multiplying both sides of Eq. (14) by wp and

then integrating over 0 � z � H, the projection yields the

following formulation:

Gþ Cþ B ¼ j2ðEþ FÞ; (16)

where

B ¼ x2

ðH

0

sðzÞ 1

c2ðzÞ/wpdz;

C ¼ d/
dz

wpj
z¼D
z¼d �

ðD

d

d/
dz

dwp

dz
dz;

E ¼
ðD

d

/wpdz;

F ¼
ðd

0

sðzÞ/wpdzþ
ðH

D

sðzÞ/wp

" #
dz;

G ¼
ðd

0

1

sðzÞ
d2/
dz2
� s0ðzÞ

s2ðzÞ
d/
dz

" #
wpdz

þ
ðH

D

1

sðzÞ
d2/
dz2
� s0ðzÞ

s2ðzÞ
d/
dz

" #
wpdz:

8>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>:

(17)

In Eq. (17), C and E are analytical, but the remaining

integrals need to be treated numerically. Here, G and F rep-

resent the PML integrals, and B allows the sound variation

because it is numerically integrated with the integrand as a

function of the depth-dependent sound speed c(z). The

numerical integration scheme for evaluating integrals G, F,

and B follows the Clenshaw–Curtis quadrature rules

(Waldvogel, 2006), which provide excellent convergence

using relatively few depth samplings. Generally, five points

per period of the basis mode are sufficient to ensure good

convergence. The projection of /q (q ¼ 0; 1;…;P� 1)

onto wp, defined in Eq. (15), yields the matrix form of Eq.

(16),

ðGþ Cþ BÞv ¼ j2ðEþ FÞv; (18)

where v is the projection coefficient matrix.

A generalized matrix eigenvalue problem can then be

obtained by left multiplying Eq. (18) by the inverse matrix

of Eþ F,

Av ¼ j2v; (19)

where the matrix A ¼ ðEþ FÞ�1ðGþ Cþ BÞ. The eigen-

value jq and eigenvector (also known as the projection coef-

ficient vector) for the mode /q can be easily calculated by

solving the eigenvalue decomposition of A. Finally, the nor-

mal mode /q can be reconstructed using Eq. (15). The

Green’s functions for sound pressure and normal displace-

ment, which are the fundamental solutions of Eq. (3), can be

calculated by a modal sum of /q (Jensen et al., 2011),

Gspðr; rsjjÞ ¼
1

2

XP�1

q¼0

N2
q/qðzsÞ/qðzrÞ

eijqx

jq
;

Guðr; rsjjÞ ¼
1

2x2q

�
�v

dhbðxÞ
dx

@Gspðr; rsjjÞ
@x

þ @Gspðr; rsjjÞ
@z

�
;

8>>>>>>>>><
>>>>>>>>>:

(20)

where hbðxÞ is the seabed boundary, Nq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiÐH

0
/2

qdz
q

is the

normalized coefficient, zs and zr are the depths of the source and

receiver, respectively, x ¼ jxs � xrj is the horizontal range, and

v is a factor specifying the sign of the partial derivatives in the

x-direction, becoming �1 for xr < xs, 1 for xr > xs, and 0 for

xr¼ xs. The partial derivatives in the above formula can be eval-

uated easily since the modal sum is depth and range separated.

The Green’s function, defined in Eq. (20), can be used for both

the water and seabed layers with the eigenvalue j changing

accordingly with the sound speed in the layer. Correspondingly,

q becomes qw in water and qs in the seabed. Note that, to

enhance the performance of modal projection method at near-

field, the Green’s function with a very close source-receiver dis-

tance is suggested to be calculated analytically using the sound

speed at the depth of the equivalent source. This can be done by

replacing the diagonal elements of the matrices that transfer

from equivalent sources to their corresponding boundaries (the

closest boundaries to the sources) with the analytical solutions,

but keeping the non-diagonal elements calculated by modal pro-

jection method.

III. RESULTS AND DISCUSSION

Numerical simulations of propagation in shallow water

were conducted with an underwater canyon and rough sea

surfaces. The seabed boundary hbðxÞ of the underwater can-

yon can be described by

hbðxÞ ¼ h0 þ Dh exp ð�x2=c2Þ; (21)

where c was set to 4Dh. The environment parameters of

shallow water are defined in Table I.

Initially, the sea surface was assumed to be corrugated

surface waves with a wave height function of

haðxÞ ¼ hs=2 cos ð2px=lÞ. Here, hs and l are the wave height

and length, respectively, and take the values shown in the

last two rows of Table I. Simulations were first carried out

for 2-D across-canyon propagation in both iso-velocity and

refractive water under the corrugated surface waves. For the

refractive case, the SSP shown in Fig. 3 was used. Then, 3-

D along-canyon propagation in both iso-velocity and refrac-

tive water under corrugated surface waves was demonstrated

using a cosine transform of an assembly of 2-D fields.

Further simulations demonstrate both the 2-D across-canyon

propagation under 1-D random rough sea surfaces and the 3-

D along-canyon propagation under 2-D transversally sym-

metric random rough sea surfaces.

To implement the ESM-RPM, three sets of equivalent

sources were placed at three conformal lines, one above the
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sea surface, one below the seabed, and one above the sea-

bed. These were offset from the corresponding boundaries

by the same standoff distance. The equivalent sources were

distributed at the conformal lines with an element length

between two adjacent sources D of 0:25k and a standoff dis-

tance ds of 0:4k. A detailed discussion of the configuration

of the equivalent sources can be found in Appendix B. For

the refractive case, Green’s functions were evaluated in the

domain truncated by the PMLs at depths of one wavelength

above z¼�7.5 m and below z¼ 200 m, respectively.

Second-degree polynomial damping functions were used for

the PMLs with a damping coefficient b of 5P0:25 and a PML

thickness of 3k. The determination of the PML parameters

is described in Appendix C.

The FE model was adopted here as a benchmark. A full-

wave solution of the wavefield provided by the FE model

includes all orders of multiple scattering, approaching an exact

solution to the Helmholtz equation as the discretization density

increases (Isakson and Chotiros, 2011, 2014). For the FE

model, triangular meshes were used to discretize both the water

and sediment domain with the maximum element size of 1/7

of the acoustic wavelength. Ten times denser elements were

required to the rough sea surface region around the water/sea-

bed interface and source position. The physical domain extend-

ing to a maximum depth of z¼ 250 m was truncated by a PML

which was composed of a mapping mesh of ten layers with a

thickness of 3k. Such a meshing scheme can guarantee a con-

vergent FE solution (Isakson and Chotiros, 2011; Qiao et al.,
2017; Qing et al., 2019).

A. 2-D range-dependent propagation in iso-velocity
shallow water

As shown in Fig. 4, the simulations began with 2-D

across-canyon propagation in iso-velocity water under cor-

rugated surface waves. The source was placed at

(0 m, 40 m). Here, the transmission loss (TL) is defined by

TL ¼ �20 log10jpj=jp0j, where jp0j is the pressure at 1-m

distance from the source (Jensen et al., 2011). For a mono-

pole source, jp0j ¼ 1. The acoustic impedance at an arbitrary

field point is assumed to be the same as that at the source,

and changes in impedances across boundaries are neglected

to maintain the continuity of the field quantities. First, the

ESM-RPM was validated by comparison with the FE model.

Excellent agreement with the FE model can be observed in

Fig. 5(a) in which the TL is plotted from 1 to 4 km with a

receiver depth of 40 m at 50 Hz, thus, demonstrating the

accuracy of the proposed ESM-RPM.

Figure 6 shows the 2-D across-canyon propagation. To dis-

play the effects of scattering from the corrugated surface waves,

the right-hand plot of Fig. 6 illustrates the flat sea surface sce-

nario. Here, scattering is defined as the inhomogeneities of the

sea surface (roughnesses) that reradiate the incident sound to

both specular and non-specular directions (Bjørnø, 2017). There

are significant differences in the fields produced by the two sce-

narios, especially at propagation ranges above 1.5 km after which

the flat surface scenario exhibits greater amplitudes and more

apparent mode patterns than does the corrugated surface wave

scenario. This can be interpreted as the presence of a rough sea

surface promoting the energy transfer from low-order modes to

high-order modes (Gao et al., 2017). As the sound propagates

across the canyon, higher-order modes continue to be cutoff

(become leaky modes) because the water depth decreases.

Therefore, the corrugated surface wave scenario leaks more

energy in the higher-order modes transformed from the lower-

order modes as a result of the presence of the rough surface.

The ESM-RPM enables the separation of the sound

field in terms of the incident field and reflected fields from

the sea surface and seabed, which aids the analysis of the

TABLE I. Shallow water parameters.

Parameters Values

Water depth (h0) 50 m

Canyon depth (Dh) 150 m

Source depth (zs) 40 m

Water density (q1) 1000 kg=m3

Water sound speed (c1) 1500 m/s or SSP shown in Fig. 3

Seabed density (q2) 2000 kg=m3

Seabed wave speed (c2) 1800 m/s

Seabed attenuation (a) 0.5 dB/k
Surface wave height (hs) 15 m

Surface wavelength (l) 150 m

FIG. 3. (Color online) The SSP used in this paper.

FIG. 4. (Color online) Diagram of the 2-D across-canyon propagation under

corrugated surface waves.
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individual scattering contributions from the boundaries for prac-

tical applications. Figure 7 plots the fields reflected by the sea

surface and seabed in the flat surface and corrugated surface

wave scenarios. Here, the reflected fields have been normalized

by the incident field, i.e., jp0j=jpincj and jp1j=jpincj. In Fig. 7(a),

a caustic pattern can be seen after every crest of the corrugated

surface waves, especially in the region around 1 km, where the

strongest scattering occurs. In this region, the corrugated surface

wave scenario exhibits slightly steeper surface reflection pat-

terns than the flat surface scenario with dominant energies scat-

tered by the sea surface tending to penetrate the seabed at

steeper grazing angles. Consequently, weaker seabed reflections

are expected in the corresponding regions for the case of corru-

gated surface waves, which can be observed by comparing Figs.

7(c) and 7(d). Such behaviors coincide with the above analysis

of the modal theory and also explain the energy decay at far

ranges in the scenario of corrugated surface waves through the

increased grazing angle of the surface reflection with respect to

the seabed. Note that the interference patterns observed in the

surface- and seabed-reflected fields, especially in Fig. 7(b), indi-

cate the presence of multiple reflections.

B. 2-D range-dependent propagation in refractive
shallow water

This section considers 2-D across-canyon propagation

in water with the SSP shown in Fig. 3 under corrugated

surface waves. Figure 5(b) shows the excellent agreement

between the TL calculated by the ESM-RPM and FE model

with a receiver depth of 40 m at 50 Hz, hence, validating the

ESM-RPM for propagation in refractive water. In compari-

son with Fig. 6(a), the sound field displayed in Fig. 8(a) for

refractive water shows greater amplitudes along the depth

axis of 40 m after 1.5 km. The presence of the SSP tends to

channel the sound through refraction toward the depth axis

of the minimum sound speed. This means that the effects of

scattering from the corrugated surface waves become weak

as the sound propagates across the canyon. The incident

field in refractive water in Fig. 8(b) illustrates that the scat-

tering has been weakened by refraction through the apparent

channeling effects along the depth axis of 40 m.

C. 3-D range-dependent propagation in shallow water
with translational symmetry

As shown in Fig. 9, this section discusses 3-D along-

canyon propagation under 2-D transversally symmetric sea

surfaces. Both the depth of the canyon and the 2-D sea sur-

face vary in the same direction. Note that although they are

idealized models, sea surfaces with translational symmetry

provide a good approximation for situations when the water

surface waves have a relatively narrow angular spectrum,

meaning that the waves have a large correlation length in

the transverse direction. Additionally, the out-of-plane

FIG. 5. (Color online) Comparisons of the transmission loss (TL) calculated by the FE model (blue solid line) and the ESM-RPM (red dashed line) for 2-D

across-canyon propagation in (a) iso-velocity and (b) refractive water under corrugated surface waves with a receiver depth of 40 m at 50 Hz.

FIG. 6. (Color online) 2-D across-canyon propagation under (a) corrugated surface waves and (b) a flat sea surface at 50 Hz.
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scattering and mode-coupling effects are included in the 3-D

model. The 3-D sound field was calculated using the cosine

transform of an assembly of 2-D fields corresponding to dif-

ferent out-of-plane wavenumbers. When the environment

only varies with the x and z axes, the Helmholtz equation

governing the 3-D sound field can be reduced to

r2 þ ðk2 � k2
yÞ

h i
pðrðx; zÞjkyÞ ¼ 0; (22)

with the solution that can synthesise the 3-D solution,

p3Dðx; y; zÞ ¼
ð1

0

pðrðx; zÞjkyÞ cos ðkyyÞdky; (23)

where ky is the out-of-plane wavenumber, and the 2-D solu-

tion is the transformed field. The above formula is based on

the Fourier transform along out-of-plane wavenumbers. The

antisymmetric integrand with the sine term vanishes when

performing the Fourier transform, which leads to the cosine

transform.

For iso-velocity water, each transformed field can be

obtained directly by introducing ky into kw and ks in Eq. (4).

For refractive water, an additional term k2
y/ should be added

to the left-hand side of Eq. (14) with the remaining steps for

evaluating the Green’s function in refractive water being

similar to those presented above. Here, the cosine transform

was evaluated using a segmented integration scheme

FIG. 7. (Color online) Reflected fields from the sea surface and seabed normalized by the incident field in the 2-D across-canyon plane with the left and right

columns displaying the corrugated surface wave and flat surface scenarios, respectively. Here, pr represents the reflected fields.

FIG. 8. (Color online) (a) 2-D across-canyon propagation in refractive water with the SSP shown in Fig. 3 under corrugated surface waves at 50 Hz and (b)

the corresponding incident field.
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proposed by He et al. (2020). Since the fully 3-D FE model

is impractical, a longitudinally invariant finite element

(LIFE) model developed by Isakson et al. (2014) was used

to benchmark the ESM-RPM for the 3-D case. This model is

also based on the cosine transform but with each trans-

formed field calculated using the FE model. For both the

LIFE model and the ESM-RPM, the segmented integration

scheme was performed with 3200 evaluations of 2-D com-

ponents divided into 8 subintervals. Comparisons with the

LIFE model are shown in Fig. 10 in which the TL is plotted

as a function of the transverse range y along x¼ 800 m with

a receiver depth of 40 m in both iso-velocity and refractive

water. Excellent agreements between the two models vali-

date the ESM-RPM for the 3-D scenario.

Figures 11(b) and 11(c) show the 3-D along-canyon

propagation in iso-velocity and refractive water in the

z¼ 40 m horizontal plane at 50 Hz. The flat surface scenario

in iso-velocity water is also shown in Fig. 11(a) for compari-

son purposes. Focusing effects along the canyon axis are

apparent in the flat surface scenario, the result of horizontal

refraction and mode-coupling effects. However, in Fig.

11(b), such focusing effects are not as obvious as those in

Fig. 11(a) because of the scattering effects. In addition, the

“beam-like” patterns around the focusing effects in Fig.

11(b) indicate the out-of-plane scattering from the corru-

gated surface waves. The sound field in refractive water

under corrugated surface waves displayed in Fig. 11(c)

exhibits similar scattering features but with greater ampli-

tudes than it does in the iso-velocity case. This is caused by

refraction induced by the SSP.

D. Computation time comparison

This section presents comparisons of the computation

time between the FE model and ESM-RPM. In order to

make the discretization of the models consistent, the maxi-

mum element size of the meshes used in the FE model was

reduced to k=4 when comparing the computation time (ten

times denser meshes are still required for the rough sea sur-

face region around the water/seabed interface and the

source position). Comparisons were performed using a lap-

top with an i9 10900K central processing unit (CPU; Intel

Corporation, Santa Clara, CA) with ten cores and 32 GB of

random access memory (RAM).

FIG. 9. (Color online) Diagram of a 3-D environment with the underwater

canyon and 2-D transversally symmetric sea surfaces.

FIG. 10. (Color online) Comparison of the TL along the x¼ 800 m axis calculated by the LIFE model (red solid line) and ESM-RPM (black dots) for 3-D

across-canyon propagation in (a) iso-velocity and (b) refractive water under corrugated surface waves with a receiver depth of 40 m at 50 Hz.

FIG. 11. (Color online) (a) Plot of the flat surface scenario in iso-velocity

water. 3-D along-canyon propagation in (b) iso-velocity and (c) refractive

water in the z¼ 40 m horizontal plane at 50 Hz.
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For the 2-D case, it took 48 s to calculate the FE solu-

tion, including 36 s for meshing and 12 s for computing. The

ESM-RPM only took 0.16 s and 2.8 s to solve the source

strength for the iso-velocity and refractive cases, respec-

tively. The sound field at an arbitrary position was then eas-

ily obtained. Here, the ESM-RPM shows an enormous

advantage in computation time for the iso-velocity case due

to the analytical Green’s function. Although the ESM-RPM

solves the refractive case around 20 times slower than it sol-

ves the iso-velocity case, it is still significantly faster than

the FE model.

For the 3-D case, the ESM-RPM solves the 3-D sound

field by calculating each 2-D transformed field parallelly.

The parallel computation was implemented using the parfor
function in MATLAB. By taking advantage of the inherent

high numerical efficiency and parallel computation, the

ESM-RPM only took 387 s and 8505 s to finish the calcula-

tion for the iso-velocity and refractive cases, respectively,

which is much shorter than the 30 120 s taken by the LIFE

model to complete the calculation. Moreover, the LIFE

model took 80 GB of disk space to store all of the 2-D trans-

formed solutions, whereas the ESM-RPM did not need to

save the 2-D solutions.

E. Ensemble averaging study for random rough
surfaces

This section examines the case of 2-D across-canyon

propagation with 1-D random rough sea surfaces and 3-D

along-canyon propagation with 2-D transversally symmetric

random rough sea surfaces. The 1-D Pierson–Moskowitz

spectra (Thorsos, 1990) were used to model the wind

speed–dependent sea surfaces. The quantities of interest in

this section are the average total field (ATF) given by hjpj2i,
the coherent field (CF) given by jhpij2, and the average inco-

herent field (AIF) given by hjpj2i � jhpij2 (Thorsos et al.,
2010). Here, p is the sound pressure from each implementa-

tion of the random rough sea surface and h�i represents an

average over an ensemble of rough sea surface implementa-

tions. The ensemble averages were performed with 50 dif-

ferent implementations of the rough surfaces for each wind

speed. The CF and AIF represent the specular reflected field

and the scattered component of the sound field in the non-

specular direction, respectively. The sum of these two terms

is the ATF. Generally, stronger scattering can cause larger

AIFs but smaller CFs.

First, 2-D across-canyon propagation was considered.

To demonstrate significant scattering effects from the sea

surface, the wave height should be comparable to the acous-

tic wavelength (Jackson and Richardson, 2007). For a fre-

quency of 50 Hz, three high wind speeds of 16, 24, and

32 m/s were used, associated with the root mean square

(RMS) wave heights of 1.6 m, 3.7 m and 6.1 m. The right

column of Fig. 12 shows the ATF in both iso-velocity and

refractive water for three different wind speeds with a

receiver depth of 40 m at 50 Hz. Overall, both the iso-

velocity and refractive water ATFs decrease as the wind

becomes stronger with the fluctuations decreasing at the

FIG. 12. (Color online) The coherent field (CF) (left column) and ATF (right column) for 2-D across-canyon propagation in (a) and (b) for iso-velocity water

and in (c) and (d) for refractive water under 1-D random rough sea surfaces with a receiver depth of 40 m at 50 Hz.
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same time. This can be explained by the fact that an increase

in wind speed causes the CF, which contains the phase terms

of the pressure across different implementations, to decay.

The behavior of the CF, declining with the increased wind

speed, can be seen in the left column of Fig. 12. Moreover,

for each wind speed, the ATF in refractive water exhibits

greater overall amplitudes than it does in iso-velocity water.

This is because the scattering effects are weakened by

refraction.

The results for 3-D along-canyon propagation in iso-

velocity water with a wind speed of 32 m/s and a receiver

depth of 40 m at 50 Hz are illustrated in Fig. 13. It can be

seen that the ATF is slightly smaller and smoother than it is

in the flat surface scenario due to the effects of scattering

from rough sea surfaces with narrower focusing patterns

along the canyon axis. Compared with the flat surface sce-

nario, the CF displays some apparent energy decay along

the across-canyon axis but relatively weak energy decay

along the canyon axis as a result of the translational symme-

try associated with the rough surfaces. In real oceans, the

energy decay along the canyon axis would be greater

because the sea surfaces are rough in the transversal direc-

tion; this will be investigated in detail in future work.

Interestingly, the AIF also exhibits apparent focusing pat-

terns along the canyon axis, which may result from the

rough scattering involved in the mode coupling across the

canyon.

IV. CONCLUSIONS

This paper has presented an ESM-RPM that uses three

sets of sources to replace the sea surface-reflected field,

seabed-reflected field, and seabed transmitted field. The cor-

responding strengths of the sources can be obtained by solv-

ing the inverse problem based on the boundary conditions at

the sea surface and seabed. The propagation in refractive

water has been taken into account in the ESM-RPM by eval-

uating the Green’s function using a modal projection

method incorporating the PMLs technique.

Numerical simulations of 2-D across-canyon and 3-D

along-canyon propagations were performed for both iso-

velocity and refractive shallow water under corrugated sur-

face waves. The ESM-RPM was validated through compari-

sons with a FE model for both 2-D and 3-D propagation

with the results showing that the ESM-RPM agrees closely

with the FE model. The sound field separation enabled by

the ESM-RPM has been investigated to obtain insights into

the scattering effects from the corrugated surface waves and

the refraction effects induced by the SSP. The 3-D propaga-

tion was demonstrated using a cosine transform to show the

effects of out-of-plane scattering. Initial Monte Carlo simu-

lations were performed to demonstrate the versatility of the

ESM-RPM in terms of showing the effects of scattering

from random rough sea surfaces. The main advantages of

the ESM-RPM are that it offers benchmark-quality solutions

and achieves high numerical efficiency. It also enables the

Monte Carlo simulations required by studies related to

boundary scattering to be implemented at a reasonable cost.

The proposed model can be applied to the benchmark propa-

gation in shallow water with varying sea surfaces and sea-

beds or even the modeling of reverberation in shallow

water. Besides, the ESM-RPM shows the potential to be

used to model time-dependent propagation, for instance,

four-dimensional (4-D) propagation under moving sea surfa-

ces, because of its high numerical efficiency. Further work

will investigate the extension of the model to a fully 3-D

environment.
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APPENDIX A: SOLUTION FOR THE MULTIPILE
LAYERS SEABED

The ESM-RPM is extended to the multilayer seabed

scenario in this appendix. The multilayer seabed is assumed

to be fluid and for the elastic seabed scenario, readers can

refer to Abawi and Porter (2007). As shown in Fig. 14, shal-

low water with a seabed of I layers is considered. Define the

sound speed and density of the ith layer of the seabed to be

csi and qsi
ði ¼ 1; 2;…; IÞ, respectively, and the position of

the interface between the ith layer and its upper layer is rbi
.

For the interface at rbi , two sets of equivalent sources are

placed above and below the interface at rð2iÞ and rð2i�1Þ,
FIG. 13. (Color online) (a) ATF, (b) CF, and (c) AIF in iso-velocity water

in the z¼ 40 m horizontal plane at 50 Hz with a wind speed of 32 m/s.
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respectively, with the sources placed at rð2i�1Þ generating

the reflected field in the upper layer of the ith layer and those

at rð2iÞ generating the transmitted field into the ith layer.

Similar to the single-layer seabed scenario, a linear system

coupling all fields generated by the 2I þ 1 sets of equivalent

sources is given by

Gspðra; rð0ÞjkwÞsð0Þ þGspðra; rð1ÞjkwÞsð1Þ ¼ �pincðraÞ;
Gspðrb1

; rð0ÞjkwÞsð0Þ þGspðrb1
; rð1ÞjkwÞsð1Þ �Gspðrb1

; rð2Þjks1
Þsð2Þ ¼ �pincðrb1

Þ;
Guðrb1

; rð0ÞjkwÞsð0Þ þGuðrb1
; rð1ÞjkwÞsð1Þ �Guðrb1

; rð2Þjks1
Þsð2Þ ¼ �uincðrb1

Þ;

..

.

Gspðrbi
; rð2i�2Þjksi�1

Þsð2i�2Þ þGspðrbi
; rð2i�1Þjksi�1

Þsð2i�1Þ �Gspðrbi
; rð2iÞjksi

Þsð2iÞ ¼ 0;

Guðrbi
; rð2i�2Þjksi�1

Þsð2i�2Þ þGuðrbi
; rð2i�1Þjksi�1

Þsð2i�1Þ �Guðrbi
; rð2iÞjksi

Þsð2iÞ ¼ 0;

8>>>>>>>>>>><
>>>>>>>>>>>:

(A1)

where the subscript i ¼ 0; 1;…; I represents the number of

seabed layers. The above linear system can be expressed as

½A�fxg ¼ fbg, which can be solved using either the

Gaussian elimination or the iterative method. Then, the field

in the water column can be calculated in a way similar to

that presented in Eq. (12), and the field in each layer of the

FIG. 14. (Color online) The scheme of

the ESM-RPM in the scenario of the

multilayer seabed.

FIG. 15. (Color online) The RMS error as a function of (a) the ratio of the acoustic wavelength k to the element length D between adjacent equivalent sour-

ces along the conformal surface, and (b) the ratio of the standoff distance ds to the acoustic wavelength k, calculated using the pressure along the same line

shown in that section. Here, ds ¼ 0:4k for (a) and D ¼ 0:25k for (b).
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seabed can be reconstructed by superposing the correspond-

ing reflected and transmitted fields after solving the linear

system.

APPENDIX B: DETERMINATION OF THE
CONFIGURATION OF EQUIVALENT SOURCES

The influence of the configuration of equivalent sources

is discussed in this appendix. The RMS error E (in dB) over

the propagation range is defined as

E ¼ 1

M

XM

m¼1

����10 log10

���� p

pref

����
( )����; (B1)

where pref and p are the sound pressures calculated using the

FE model and the ESM-PRM, respectively, along the same

line shown in Fig. 5(a). E is plotted as a function of the ratio

of the acoustic wavelength k to the element length D
between adjacent equivalent sources along the conformal

surface in Fig. 15(a), remaining large when D is greater than

k=2 but shrinking rapidly thereafter. This behavior coincides

with an equivalent of the Nyquist criterion for sampling

waveforms, suggesting that the distribution of equivalent

sources requires at least approximately 2.5 points per

wavelength.

The influence of the standoff distance ds can be studied

by calculating E as a function of the ratio of ds to k. The

error shown in Fig. 15(b) decreases significantly as ds

increases, eventually remaining lower than 0.1 dB when

ds > 0:2k. The large errors for small ds are induced by the

rise in the singularity of the normal displacement transfer

matrix.

Based on these results, the following configuration of

equivalent sources is recommended: a conformal line to the

corresponding boundary with an element length D of 0:25k
and a standoff distance ds of 0:4k.

APPENDIX C: PARAMETER SELECTION FOR THE
PMLS

This appendix discusses the determination of the PML

parameters, including the PML thicknesses and damping

function, by assessing the relative errors with respect to a

reference solution. The Green’s function in a homogeneous

free-space is taken as the reference solution. This can be

written analytically as

Ganalyðx; zÞ ¼
i

4p
H
ð1Þ
0 k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ2 þ ðz� z0Þ2

q� �
;

(C1)

where (x0, z0) is the position of the line source. The relative

errors are given by

Errors ¼

ð
X
jGanaly � Gj2dxdz

� �1=2

ð
X
jGanalyj2dxdz

� �1=2
; (C2)

where G is the solution calculated by the proposed method,

and X is the calculation domain. In this case, X is truncated

by two PMLs at depths of -30 and 230 m, ranging from 1 to

4 km with a sound speed of 1500 m/s. The source was placed

at a depth of z0 ¼ 100 m, and x0 ¼ 0. The PML thickness d
and b were set to default values of 3k and 20P0:25, respec-

tively, unless specified. The parameter selection for d and b
will be discussed further in the following simulations.

FIG. 16. (Color online) Relative error curve as a function of P=Pcut at

50 Hz.

FIG. 17. (Color online) Relative errors as a function of b=P0:25 for the PMLs using polynomial damping functions of degrees one (left column) and two

(right column) with a PML thickness of 3k at 50 Hz (blue solid line) and 500 Hz (red solid line).
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First, the number of basis modes P was determined by

analyzing the convergence of the relative errors. Figure 16

shows the relative errors as a function of the ratio of P to the

number of cutoff basis modes Pcut (Pcut ¼ 2Hf=c), using the

two types of damping functions at 50 Hz. The relative errors

for both damping functions steadily decrease according to

1=P0:25 when P < Pcut after which they decay more rapidly

according to 1=P3. The modal projection method truncates the

free-space with two PMLs to calculate the free-field Green’s

function, which can be considered as the continuous spectrum.

Basis modes containing only propagating modes can provide

sufficient convergence for a bounded space where the field

can be expressed as the discrete spectrum. When dealing with

the free-field truncated by PMLs, the propagating modes (dis-

crete spectrum) are insufficient, and the evanescent modes

must be taken into account to approximate the continuous

spectrum accurately. Besides, the attenuating behavior of the

evanescent modes coincides with the absorption of the reflec-

tion from outer boundaries. Therefore, a rise of evanescent

modes can accelerate the convergence after P > Pcut.

Although an increasing P results in higher accuracy, there is

some additional numerical cost. P ¼ 3Pcut provides sufficient

accuracy with errors barely exceeding 1% and, therefore, this

value was used in the subsequent simulations.

To further determine the optimal damping function and

the corresponding b, Fig. 17 presents the relative errors as a

function of b=P0:25 for the two types of damping functions

at two different frequencies. Initially, the errors decrease as

b increases for both PDF-1 and PDF-2, which coincides

with the polynomial damping functions eliminating the spu-

rious reflections from the outer boundary of the PMLs by

enlarging the damping coefficients (Berm�udez et al., 2007).

After reaching their minima, the errors at 50 Hz tend to

remain stable and then steadily rebound, whereas the errors

at 500 Hz suddenly rise as b increases. This rebound in the

errors can be interpreted as an excessively complex stretch-

ing induced by large damping coefficients. Note that the

minimum error at 500 Hz for PDF-2 is significantly smaller

than the minimum error for PDF-1. Additionally, PDF-2 dis-

plays a wider b range over which the errors are less than

1%. This indicates that PDF-1 is more sensitive to the damp-

ing coefficient. The above analysis suggests that robust

results can be obtained using PDF-1 with b ¼ 2:5P0:25 and

PDF-2 with b ¼ 5P0:25 for both the low and high

frequencies.

Next, the errors are plotted as a function of the PML

thicknesses divided by the acoustic wavelength in Fig. 18.

The errors for PDF-1 decrease as the PMLs become thicker.

PDF-2 exhibits a similar trend initially but starts to increase

after d exceeds 3k in the 50 Hz case and 5k in the 500 Hz

case. The results show that sufficient accuracy can be

obtained using PMLs with d ¼ 3k in both cases.

The above results suggest that the optimal PML setup is

PDF-2 with b ¼ 5P0:25 and a PML thickness of 3k. This

PML setup was used for propagation in refractive water in

this study. Using this optimal PML setup, the real part of the

sound pressure in X truncated at 1 km is as shown in Fig. 19.

No reflection from outer boundaries of the waveguide can

be seen, thus, demonstrating the effectiveness of the PMLs.
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