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ABSTRACT:
This paper develops an efficient three-dimensional (3D) underwater acoustic propagation model with multi-layered

fluid seabeds based on the equivalent source method (ESM). It solves the Helmholtz equation exactly by a superposi-

tion of fields generated by equivalent sources. A linear system coupling ESM equations is derived by imposing

boundary conditions and solved iteratively using the generalized minimum residual method. Unlike a direct ESM

solver, matrix–vector products in each iteration are evaluated by a pre-corrected fast Fourier transformation (PFFT),

significantly reducing the numerical cost and enabling efficient solution of 3D large-scale propagation. Moreover,

sound speed profiles can be taken into account by dividing the water column into sub-layers, each of which requires

an individual PFFT procedure using an FFT subgrid scheme. Simulations of propagation over a Gaussian canyon

validate the PFFT-accelerated ESM (PFFT-ESM). The capability of the PFFT-ESM for 3D scattering problems is

demonstrated by further presenting the Gaussian canyon simulations with corrugated surface waves.
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I. INTRODUCTION

Three-dimensional (3D) full-wave simulations,

obtained by numerical models based on the Helmholtz equa-

tion, are essential for benchmarking underwater acoustic

propagation with complex topographies. They are also use-

ful for investigating 3D propagation effects, such as hori-

zontal refraction and transverse coupling. Generally, the

approximation of the wave equation is required to imple-

ment 3D underwater acoustic propagation models on mod-

ern PC platforms, for example, the paraxial approximation

in the parabolic equation (PE) and the eikonal equation for

the ray tracing. The PE method offers a one-way wave equa-

tion solution, thus predicting accurate results in underwater

environments with negligible back-scattering. In addition,

the phase errors induced by the PE approximation restrict

angles around the dominant propagation direction (Jensen

et al., 2011). On the other hand, the ray tracing is a high-

frequency approximation and needs corrections to caustics

and shadow zones. Finding eigenrays becomes more com-

plicated for complex topographies in 3D scenarios (Jensen

et al., 2011). Besides, it fails to capture the horizontal dif-

fraction accurately where the bottom derivative is discontin-

uous (Porter, 2019). Further numerical efforts are required

to improve the applicabilities of the approximations (Sturm,

2016; Lingevitch et al., 2002; Collins and Evans, 1992),

increasing the computational burdens on either the PE or the

ray tracing to obtain 3D full-wave simulations.

With the rapid development of computational power,

several numerical models have been developed to solve the

Helmholtz equation exactly, including the finite element

method (FEM), spectral element method (SEM), boundary

element method (BEM), and equivalent source method

(ESM). Recently, there has been growing interest in using

the FEM to model underwater propagation (Isakson et al.,
2014), scattering (Isakson et al., 2014), and reverberation

(Isakson and Chotiros, 2011). The FEM solves the weak

form of the Helmholtz equation by discretizing the physical

domain. With careful treatments of meshing, the FEM can

provide benchmark-quality solutions without any approxi-

mations. Another attractive aspect of the FEM is the versa-

tilities for geometries and material properties treated in

simulations. Since the FEM is fully customized, it is very

suitable for benchmarking 2D problems with complex envi-

ronment parameters. Nevertheless, computational power

restricts the meshing size, thus the problem size. To extend

the FEM to 3D underwater propagation, a longitudinal

invariant finite element (LIFE) model has been proposed by

Isakson et al. (2014). However, geometry and environment

parameters treated in this model are restricted to be transla-

tionally symmetric. Also, involving volume discretization,

the SEM has been widely used to model underwater propa-

gation in the time domain (Cristini and Komatitsch, 2012;

Bottero et al., 2016; Bottero et al., 2018). The SEM utilizes
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a high-order piecewise polynomial approximation to the

weak formulation of the Helmholtz equation, enabling a

numerically efficient full-wave solution of the wavefield.

Although the SEM has been extended to handle 3D under-

water propagation at low frequencies (Xie et al., 2016), the

problem size may be restricted since the SEM still relies on

volume discretization.

Apart from the above methods, boundary integral equa-

tion (BIE)–based methods have increasingly been applied to

underwater acoustic propagation. The BIE-based method

solves the Helmholtz boundary-value problem exactly but

significantly reduces computational load by discretizing the

boundary, rather than the whole physical domain. Siderius

and Porter (2008) utilized a Helmholtz–Kirchhoff approxi-

mation (HKA) integral to model broadband sound transmis-

sions in the ocean with time-varying sea surfaces. Although

this model can be extended to 3D scenarios straightfor-

wardly, additional efforts are required to correct the high-

frequency approximation, and the seabed is assumed to be

flat. Several literature pieces have demonstrated BEM’s

capability for both 2D propagation and 3D propagation with

translational symmetry (Godinho et al., 2001; Pereira et al.,
2010). In the BEM-based propagation model, a linear sys-

tem coupling all boundary integrals needs to be solved,

involving a dense N�N coefficient matrix (N is the number

of unknown pressures and normal pressure gradients on the

boundary). Generally, the linear system can be solved using

either the Gaussian elimination at a numerical cost of OðN3Þ
or the iterative method at OðN2Þ. When dealing with 3D

large-scale propagation, the BEM requires a huge amount of

operations and an impractical memory to generate and store

the dense matrix, respectively. A recent study proposed a

direct 3D numerical sound propagation model by combining

the BEM with the pre-corrected fast Fourier transform (PFFT)

technique (Li et al., 2019). A key aspect of the PFFT technique

involved is that it significantly reduces the numerical cost of

evaluating matrix–vector products (Phillips and White, 1997),

and so the memory savings achieved in this model make it

suitable for the numerical solution of large-scale underwater

acoustic propagation on modern PC platforms. The PFFT tech-

nique is particularly suitable for incorporating integral-based

methods when dealing with boundary-value problems.

As an alternative to the BEM, the ESM was developed

to handle the field radiated by a complex radiator initially

and has been applied to underwater acoustic propagation

recently (Abawi and Porter, 2007; He et al., 2020; He et al.,
2021). The ESM has two advantages over the BEM

(Koopmann et al., 1989): (1) numerical implementation is

simpler since the basis functions are nodes rather than ele-

ments; (2) the BEM’s inherent singularity is circumvented

by retracing the equivalent sources from their corresponding

boundaries. Similarly, a dense matrix is involved in the

ESM, transferring equivalent sources to their corresponding

boundaries. A direct ESM solver, therefore, is impractical

for 3D large-scale propagation. To the best of our knowl-

edge, no ESM-based propagation model with accelerated

algorithms has been extended to 3D large-scale propagation

yet. This paper aims to bridge this gap by combining a 3D

ESM-based propagation model with the PFFT technique.

This paper first derives the equivalent source equation

governing the sound field in a waveguide overlaying a multi-

layered fluid seabed, with the surface-reflected, seabed-

reflected, and seabed-transmitted fields replaced with the

fields generated by a few sets of equivalent sources. By

imposing boundary conditions at the sea surface and the

interfaces between two fluid layers, a linear system is

derived, and this is then solved iteratively using the general-

ized minimum residual method (GMRM). The GMRM is

employed because: (a) it is a Krylov subspace method to

solve linear systems with asymmetric matrices [A], converg-

ing rapidly with an appropriate preconditioner; (b) it enables

the matrix-free iteration, which is suitable for incorporating

with the PFFT. In each iteration step, the matrix–vector prod-

uct is evaluated using the PFFT technique. This technique

projects strengths of equivalent sources onto a uniform fast

Fourier transform (FFT) grid, converting a matrix–vector

multiplication to a 3D convolution. In this way, the numerical

cost is reduced from OðN2–3Þ for a direct ESM solver to

OðNg log NgÞ (where N and Ng are the numbers of equivalent

sources and FFT grid points). A scheme of FFT subgrids is

proposed to improve the computational efficiency for multi-

layered scenarios further. The PFFT-accelerated ESM

(PFFT-ESM) is validated by comparison with the LIFE

model in the scenario of propagation over a Gaussian canyon,

and its capability for 3D scattering from sea surfaces is dem-

onstrated by presenting the Gaussian canyon simulations

with corrugated surface waves.

The primary contributions of this paper are: (a) acceler-

ated by the iterative GMRM solver and the fast evaluation

of the matrix-vector product, the ESM is extended to 3D

large-scale computations. The PFFT-ESM enables a full-

wave simulation of 3D large-scale underwater propagation

to be performed on a standard computer rather than super-

computers to which most of the researchers cannot get easy

access; (b). Numerical schemes are proposed to improve the

computational efficiency of the PFFT-ESM further, includ-

ing the selection of a preconditioner according to the stand-

off distance of equivalent sources and an optimized scheme

of FFT subgrids for a stratified water column. The remainder

of the paper is organized as follows: Sec. II presents the for-

mulae of the 3D ESM and the PFFT, Sec. III presents

numerical simulations, and conclusions are drawn in Sec.

IV.

II. THREE-DIMENSIONAL UNDERWATER
ACOUSTIC PROPAGATION MODEL USING
THE PRE-CORRECTED FAST FOURIER
TRANSFORM–ACCELERATED EQUIVALENT
SOURCE METHOD

A. An equivalent source method-based propagation
model with multi-layered fluid seabeds

As shown in Fig. 1, consider the range-dependent shal-

low water with a sound speed and density of cw and qw,
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overlaying a fluid seabed of I layers. The sound speed and

the density of the ith layer of the seabed are csi
and qsi

ði ¼ 1; 2;…; IÞ, respectively. Here, the subscripts w and s
specify the water and seabed layers, respectively. The posi-

tions of the surface and the interface between the ith layer

and its upper layer are ra and rbi
, respectively. The

Helmholtz equation governing the sound field pðrÞ in the

waveguide is given by

�2 þ k2½ �pðrÞ ¼ 0; (1)

where r ¼ ðx; y; zÞ is the position vector, and k is the wave-

number that becomes kw ¼ x=cw in water and ks ¼ x=cs in

the seabed, where x is the angular frequency. The pressure-

release boundary condition at ra and the continuity of pres-

sure and displacement at rbi
can be expressed as

pðraÞ ¼ 0;

pðrbi
Þ� ¼ pðrbi

Þþ;
uðrbi
Þ� ¼ uðrbi

Þþ;

8><
>:

(2)

where u is the normal displacement at rbi
. The equivalent

source method (ESM) will express the solution of Eq. (1) by

a superposition of basis functions (the Green’s functions),

with the unknown coefficients of the basis functions solved

by imposing the boundary conditions defined in Eq. (2). The

Green’s functions have the mathematical expressions of

Gspðr; r0jkÞ ¼ 1=4pðejkjr�r0j=jr� r0jÞ for sound pressure and

of Guðr; r0jkÞ ¼ 1
qx2 n̂�Gspðr; r0jkÞ for normal displacement,

automatically satisfying the Sommerfeld radiation condi-

tion. Here, r0 is the position of the point source, n̂ represents

the unit normal vector to the corresponding boundary, and k
and q are the wavenumber and the density that will subse-

quently change according to the position of the receiver.

Based on the ESM, the waveguide field can be sepa-

rated into the incident field, the surface-reflected field, the

seabed-reflected field, and the seabed-transmitted field. In

the water column, the sound field is separated into the inci-

dent field and the fields reflected by the boundaries at ra and

rb1
. In the ith seabed layer (i< I), the sound field is the sum-

mation of the field transmitted in the layer and the field

reflected by the lower boundary of the layer, while only the

seabed-transmitted field exists in the Ith layer. Accordingly,

one set of equivalent sources is placed above the sea surface

at r0, replacing the surface-reflected field. For each interface

between two fluid layers at rbi
, two sets of equivalent sour-

ces are utilized, placed above the interface at rð2iÞ and

below the interface at rð2i�1Þ, which replaces the seabed-

transmitted field in the ith layer and the seabed-reflected

field in the upper layer, respectively. The solution of Eq. (1)

then can be written as (Abawi and Porter, 2007)

pwðrÞ ¼ pincðrÞ þ
XN

n¼1

Gspðr; rð0ÞjkwÞsð0Þn þ
XN

n¼1

Gspðr; rð1ÞjkwÞsð1Þn; r 2 water

psðrÞ ¼
XN

n¼1

Gspðr; rð2iÞjksi
Þsð2iÞn þ

XN

n¼1

Gspðr; rð2iþ1Þjksi
Þsð2iþ1Þn; r 2 sedimentði < IÞ

psðrÞ ¼
XN

n¼1

Gspðr; rð2IÞjksI
Þsð2IÞn; r 2 basement ði ¼ IÞ

8>>>>>>>>>><
>>>>>>>>>>:

(3)

where pinc is the incident field, N is the number of each set of

equivalent sources, and sð0;1;2i;2iþ1Þn is the unknown source

strength for the nth source. The solution for displacement in the

waveguide has the similar expression as Eq. (3), superposed by

the displacement Green’s functions. By imposing the boundary

conditions defined in Eq. (2) at N nodes at each boundary, a lin-

ear system is derived, coupling all fields generated by 2I þ 1

sets of equivalent sources (He et al., 2021):

FIG. 1. (Color online) Scheme of ESM for shallow water overlying a multi-

layered fluid seabed, with black, blue, and red solid circles denoting those

equivalent sources replacing the surface-reflected field, the seabed-reflected

field and the seabed-transmitted field, respectively.
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Gspðra; rð0ÞjkwÞsð0Þ þGspðra; rð1ÞjkwÞsð1Þ ¼ �pincðraÞ;
Gspðrb1

; rð0ÞjkwÞsð0Þ þGspðrb1
; rð1ÞjkwÞsð1Þ �Gspðrb1

; rð2Þjks1
Þsð2Þ �Gspðrb1

; rð3Þjks1
Þsð3Þ ¼ �pincðrb1

Þ;
Guðrb1

; rð0ÞjkwÞsð0Þ þGuðrb1
; rð1ÞjkwÞsð1Þ �Guðrb1

; rð2Þjks1
Þsð2Þ �Guðrb1

; rð3Þjks1
Þsð3Þ ¼ �uincðrb1

Þ:

..

.

Gspðrbi
; rð2i�2Þjksi�1

Þsð2i�2Þ þGspðrbi
; rð2i�1Þjksi�1

Þsð2i�1Þ �Gspðrbi
; rð2iÞjksi

Þsð2iÞ

�Gspðrbi
; rð2iþ1Þjksi

Þsð2iþ1Þ ¼ 0;

Guðrbi
; rð2i�2Þjksi�1

Þsð2i�2Þ þGuðrbi
; rð2i�1Þjksi�1

Þsð2i�1Þ �Guðrbi
; rð2iÞjksi

Þsð2iÞ

�Guðrbi
; rð2iþ1Þjksi

Þsð2iþ1Þ ¼ 0

..

.

GspðrbI
; rð2I�2ÞjksI�1

Þsð2I�2Þ þGspðrbI
; rð2I�1ÞjksI�1

Þsð2I�1Þ �GspðrbI
; rð2IÞjksI

Þsð2IÞ ¼ 0;

GuðrbI
; rð2I�2ÞjksI�1

Þsð2I�2Þ þGuðrbI
; rð2I�1ÞjksI�1

Þsð2I�1Þ �GuðrbI
; rð2IÞjksI

Þsð2IÞ ¼ 0;

8>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>:

(4)

where pinc and uinc are the N � 1 incident pressure and nor-

mal displacement vectors at the corresponding boundaries,

Gu;sp represents the transfer matrix with its entries being

Gu;spðrm; rð2i�2;2i�1;2i;2iþ1ÞnjkÞ, and sð2i�2;2i�1;2i;2iþ1Þ is the

N � 1 strength vector of equivalent sources located at

rð2i�2;2i�1;2i;2iþ1Þ. Here, rm is the position of the mth receiver.

The above linear system can be expressed as ½A�fxg ¼ fbg
which can be solved using either the Gaussian elimination at

a numerical cost of OðN3Þ or the iterative method at a

numerical cost of OðN2Þ. A straightforward linear system

solution is numerically expensive for large-scale propaga-

tion, requiring an impractical amount of random access

memory (RAM) to store the dense matrix ½A�. In this paper,

the linear system is solved using the generalized minimum

residual method (GMRM). For the GMRM, the matrix–vec-

tor product ½A�fxg in each iteration is evaluated using the

pre-corrected fast Fourier transform (PFFT) technique with-

out an explicit expression of ½A�. Consequently, the numeri-

cal cost is reduced from OðN2�3Þ to OðNg log NgÞ, where Ng

is the number of the FFT grids. The PFFT will be detailed in

the next section. After solving the linear system, the wave-

guide field can be calculated using Eq. (3).

B. Pre-corrected fast Fourier transform technique

In the PFFT technique, a 3D block is first defined to

contain all the equivalent sources and their corresponding

boundaries and is then subdivided into several small cubes,

each of which contains a few equivalent sources, as shown

in Fig. 2(a). The cubes are referred to as cells. The basic

idea of the PFFT is to evaluate the distant source–receiver

interaction using a few weighted Green’s functions for point

sources on a uniform grid throughout the cell volume (a

locally weighted grid-to-grid interaction), while the near-

field source–receiver interaction between neighboring cells

is computed directly. For simplicity, the grid points are

defined to be uniform in the x, y, and z directions, with a

grid size of dg. The following description is of the four-step

process involved in the PFFT technique to evaluate

matrix–vector products for pressure. Matrix–vector products

for displacement can be evaluated similarly by separating

the displacement into its three components and evaluating

each component individually using the same PFFT proce-

dure as for pressure, but with the Green’s functions for

displacement.

1. Projection

As shown in Fig. 2(b), equivalent sources are pro-

jected onto the point sources placed at the vertices of the

cells containing these equivalent sources. Consequently,

an Nx � Ny � Nz array of grid-point sources is used to

replace the equivalent sources in all the cells (here, Nx, Ny,

and Nz are the numbers of grid points in the x, y, and z
directions, respectively, with NxNyNz ¼ Ng). One can

obtain that

FIG. 2. (Color online) (a) FFT grid (gray dots) containing both the equiva-

lent sources (orange dots) above the sea surface and their corresponding

boundaries (cyan and khaki surfaces). (b) Projection of equivalent sources

onto the FFT grid (shown in the blue cube) for evaluating the distant grid-

to-grid interaction denoted by the bold arrow. (c) Interpolation of the field

from the FFT grid to the nodes at the boundary (shown in the red cube).
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Gðx; y; z; xeq
n ; y

eq
n ; z

eq
n jkÞ

¼
X
h;i;j

Wh;i;jðxeq
n ; y

eq
n ; z

eq
n ÞGðx; y; z; xg

h; y
g
i ; z

g
j jkÞ;

h ¼ 1; 2;…;Nx; i ¼ 1; 2;…;Ny; j ¼ 1; 2;…;Nz;

(5)

where the superscripts eq and g specify the coordinates of

the equivalent sources and the grid points, respectively, and

the triplet h, i, j and the subscript n specify the grid points in

three dimensions and the nth equivalent source, respec-

tively. Here, Wh;i;jðxeq
n ; y

eq
n ; z

eq
n Þ is the spatial interpolation

function for the coordinates ðxg
h; y

g
i ; z

g
j Þ of the vertex of the

cell that contains the equivalent source placed at

ðxeq
n ; y

eq
n ; z

eq
n Þ. Quadratic interpolation functions are used in

this paper, and the construction of the spatial interpolation

function follows the method presented by Yan and Liu

(2011). Now, consider N equivalent sources with their

source strengths snðxeq
n ; y

eq
n ; z

eq
n Þ:

XN

n¼1

snðxeq
n ; y

eq
n ; z

eq
n ÞGðx; y; z; xeq

n ; y
eq
n ; z

eq
n jkÞ

¼
X
h;i;j

sgðxg
h; y

g
i ; z

g
j ÞGðx; y; z; xg

h; y
g
i ; z

g
j jkÞ: (6)

where sgðxg
h;y

g
i ; z

g
j Þ ¼

PN
n¼1 snðxeq

n ;y
eq
n ; z

eq
n ÞWh;i;jðxeq

n ;y
eq
n ; z

eq
n Þ

is the total strength of the grid point source at ðxg
h;y

g
i ; z

g
j Þ.

2. Convolution

As shown by the bold arrow in Fig. 2(a), once the

equivalent sources have been projected onto the 3D array of

grid points, the pressures on the grids due to the point sour-

ces on these grids can be evaluated by a 3D convolution

(Phillips and White, 1997):

pðxg
h0 ; y

g
i0 ; z

g
j0 Þ ¼

X
h;i;j

Gðh0 � h; i0 � i; j0 � jÞsgðh; i; jÞ

¼
X
h;i;j

Gðxg
jh0�hj; y

g
ji0�ij; z

g
jj0�jj; xg

0; y
g
0; z

g
0jkÞ

� sgðxg
h; y

g
i ; z

g
j Þ: (7)

For rapid evaluation of the 3D convolution, the 3D

FFTs of the kernel array Gðh0 � h; i0 � i; j0 � jÞ and the

strength array sgðh; i; jÞ are first performed, followed by the

inverse FFT of FFT½Gðh0 � h; i0 � i; j0 � jÞ� • FFT½sgðh; i; jÞ�,
where • denotes array multiplication.

3. Interpolation

After calculation of the pressure at the entry FFT grid

points pðxg
h0 ; y

g
i0 ; z

g
j0 Þ by the convolution, the pressures at arbi-

trary positions pðx; y; zÞ within the grids can be evaluated by

interpolating the fields from the grids to the desired field

point using Wh0;i0;j0 ðx; y; zÞ, as shown in Fig. 2(c):

pðx; y; zÞ ¼
X
h0;i0;j0

Wh0;i0;j0 ðx; y; zÞpðxg
h0 ; y

g
i0 ; z

g
j0 jkÞ: (8)

4. Precorrection

The projection of Gðrðx; y; zÞ; rðxeq
n ; y

eq
n ; z

eq
n ÞjkÞ becomes

inaccurate when jr� req
n j=dg < Oð1Þ. Therefore, for a very

small source–receiver distance, the contribution due to exact

near-field interaction should be directly added to Eq. (8),

whereas that due to the influence determined by the 3D convo-

lution should be subtracted from Eq. (8). In this paper, the near-

field is defined by jr� req
n j < 3dg such that precorrection is

performed for receivers located in three cubes neighboring the

equivalent sources. This means that when solving the linear sys-

tem, only the submatrices Gu;spðrbi
; rð2i�1;2iÞjkÞ and

Gspðra; rð0ÞjkÞ require precorrection.

C. Optimized scheme of FFT grids

A global FFT grid shown on the left in Fig. 3 is typi-

cally used to perform the PFFT procedure, covering all

boundaries and the corresponding equivalent sources. Each

additional layer treated in the simulation requires two addi-

tional sets of equivalent sources, and all steps involved in

the PFFT are performed throughout the global FFT grid for

each set of equivalent sources. Therefore, as the number of

layers treated increases, the computational cost will increase

proportionally. Real sound speed profiles (SSPs) are depth-

dependent and need to be represented by a combination of

layers within which the sound speed is piece-wise constant.

In this case, the global FFT grid may be numerically expen-

sive. Herein a scheme of FFT subgrids is used to reduce the

computational cost in the scenarios of a stratified water col-

umn. The global FFT grid is broken into several FFT sub-

grids shown on the right in Fig. 3, each of which covers an

individual layer and the equivalent sources near the upper

and lower boundaries of the layer. Accordingly, each layer

requires an individual PFFT procedure throughout the FFT

subgrid that covers it. The computational efficiency is

improved significantly by performing the PFFT procedure

only throughout the FFT subgrid, rather than the global grid

for each set of equivalent sources. Details of the comparison

between the same case using the global FFT grid and the

FFT subgrid is given in the following simulations.

III. NUMERICAL RESULTS

This section presents the results of numerical simula-

tions. To benchmark the proposed PFFT-accelerated ESM

(PFFT-ESM), propagation in shallow water with a Gaussian

canyon was considered, and to show the PFFT-ESM’s capa-

bility for taking a sound speed profile into account, propaga-

tion in refractive water with the canyon was considered. To

implement the PFFT-ESM, the sea surface and seabed were

discretized uniformly in both the x and y directions with a

k=6 element size of the two adjacent nodes at the boundaries

(de). The equivalent sources were then offset from their cor-

responding boundaries by a stand-off distance ds equal to de.

Such a stand-off distance provides a good compromise

between computational accuracy and the diagonal domi-

nance of the transfer matrix. For the PFFT parameters, the

grid size dg was set to be de, and the scale of the grid used
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was as given below for each simulation. A Jacobian precondi-

tioner was selected to accelerate the convergence rate of the

iterative GMRM solver since submatrices in ½A� are diagonally

dominant when ds¼ de is set. The GMRM halted iterations

when the desired tolerance converged to 10�5. All the simula-

tions were implemented using MATLAB software (Matlab,

Natick, MA) installed on a computer with an Intel Core

i9–10900K CPU and 64 GB RAM (Intel, Santa Clara, CA).

A. Propagation over a multi-layered seabed

The proposed model was benchmarked by comparison

with the longitudinal invariant finite element (LIFE)

model (Isakson et al., 2014) in the scenario of sound prop-

agation over a Gaussian canyon. As shown in Fig. 4, the

upper and lower layers of the sediment are described by

zb1
ðxÞ ¼ �100–400 exp ð�x2=6002Þ and zb2

ðxÞ ¼ �200–

400 exp ð�x2=6002Þ respectively, with the source placed at

ð0 m; 0 m;�40 mÞ. The source frequency was 20 Hz. A

two-layered fluid seabed was assumed here, composed of

a homogeneous sediment layer overlaying a homogeneous

half-space (basement). The density, sound speed, and

attenuation of the sediment were 2000 kg/m3, 1800 m/s,

and 0.1 dB/k (where k is the acoustic wavelength), respec-

tively, and those of the basement were 2500 kg/m3,

3000 m/s, and 0.5 dB/k, respectively. The computational

domain size spans 4 km� 11 km� 637.5 m, with Ng ¼
1:575� 107 FFT grid points and 5N ¼ 1:408 �106 equiva-

lent sources. It should be noted that a direct ESM solver

requires at least 14770.5 GB RAM and Oð1012–18Þ opera-

tions, which is impractical. However, by incorporating

PFFT, the proposed model can be run with a 64 GB RAM

computer, and for the present problem, it took about 19.5 h

to solve the linear system.

First, comparisons between the LIFE model and the

proposed model are presented. Excellent agreements with

the LIFE model can be seen in Figs. 5(a) and 5(b), where

the transmission losses (TLs) are plotted in the y ¼ 0 m and

the x¼ 100 m planes, respectively, with a receiver depth of

40 m, thus validating the proposed model. Figure 6(a) fur-

ther displays the TL in the x–y plane at the same receiver

depth, exhibiting apparent focusing patterns along the can-

yon axis due to the horizontal refraction. Besides, strong

mode coupling effects (mode cutoff) occur as the sound

wave propagates across the canyon, resulting in large

across-canyon TL. The above results demonstrate the effec-

tiveness of the proposed model in accurately modeling 3D

underwater sound propagation including both the horizontal

refraction and mode coupling effects.

Next, the applicability of the proposed model to calculate

scattering from rough sea surfaces is demonstrated by modeling

FIG. 3. (Color online) An example of the FFT subgrid scheme in a five-layered scenario with the global FFT grid shown on the left.

FIG. 4. (Color online) Scheme of the Gaussian canyon treated in the

simulation.
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propagation in shallow water with the Gaussian canyon and

corrugated surface waves. In this case, the corrugated surface

waves oriented perpendicular and parallel, to the canyon axis

were considered (h ¼ 90� and h ¼ 0� respectively where h
is the angle between the wave direction and the canyon

axis), parameterized by zaðx; yÞ ¼ �15 cos ð2px=500Þ and

zaðx; yÞ ¼ �15 cos ð2py=500Þ, respectively. Figures 6(b) and

6(c) plots the corresponding TL in the z¼�40 m plane. By

comparing the subplots in Fig. 6, it can be found that greater

TLs are associated with the presence of the corrugated surface

waves. This can be interpreted as indicating that energy transfer

from lower modes to higher modes promotes more leakage of

energy in the seabed, associated with scattering from the corru-

gated surface wave. By further comparing Figs. 6(b) and 6(c),

the case of h ¼ 90� exhibits greater across-canyon TLs than

the case of h ¼ 0� does, with broader focusing patterns

observed along the canyon axis. This is because the across-

canyon corrugated surface wave mainly scatters sound waves

propagating across the canyon but tends to channel sound

waves along the canyon axis. On the contrary, scattering from

the along-canyon corrugated surface wave mainly results in the

energy decay along the canyon axis.

Then, Figs. 7 and 8 plot the across-canyon TL and the

along-canyon TL in the y¼ 0 m and the x¼ 0 planes, respec-

tively, with the two wave orientations. For comparison pur-

poses, the flat sea surface scenario is also given. In the

across-canyon plane, more leakage of energy in the seabed

can be seen in the presence of corrugated surface waves,

coinciding with the above analysis. Compared with the case

of h ¼ 0�, the case of h ¼ 90� exhibits slightly stronger

energy decays in the water column but smaller TLs in the

sediment layer with the interference pattern indicating that

at least two sediment modes are supported. In the along-

canyon plane, scattering from corrugated surface waves

induces more significant energy decay for longer distances,

coinciding with the results shown in Fig. 6. Besides, The

case of h ¼ 0� exhibits apparent scattering features mainly

ascribed to the in-plane scattering from the along-canyon

corrugated surface wave, while the scattering effect in the

case of h ¼ 90� is ascribed to the out-of-plane scattering

from the across-canyon corrugated surface wave.

B. Propagation in refractive water

Due to changes in temperatures and salinities in the

water column, depth-dependent SSP strongly influence

sound propagation in shallow water. BIE-based methods can

FIG. 5. (Color online) Comparisons of transmission losses with the LIFE

model (red solid line) in: (a) the y¼ 0 m and (b) the x¼ 100 m planes

respectively, with a receiver depth of –40 m at 20 Hz.

FIG. 6. (Color online) Transmission loss in shallow water over the Gaussian canyon with a receiver depth of z¼ – 40 m. Here, (a), (b), and (c) displays sce-

narios of flat and corrugated surface waves, the latter oriented parallel and perpendicular to the canyon axis, respectively.
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handle an inhomogeneous SSP by replacing the homoge-

neous Green’s function with the inhomogeneous one (He

et al., 2021; Choo et al., 2017). However, the accelerated

algorithm assumes a homogeneous background (Cho and

Cai, 2012), disabling the inhomogeneous Green’s functions.

Another way to introduce the SSP to the model is to divide

the water column into layers where the SSP can be consid-

ered as a piece-wise constant approximately. Similar treat-

ments to handle inhomogeneities in stratified media can be

seen in the wavenumber integral approach (West et al.,

1991) and in the Helmholtz integral operator in 3D layered

media (Cho and Cai, 2012). The following simulations dem-

onstrate the PFFT-ESM’s capability for propagation in

refractive water with a two-layered summer profile. Such a

simplified profile provides a good approximation to the

actual situation in shallow water, where the sound speed

varies significantly in the surface duct but changes steadily

in deeper regions (Jensen et al., 2011). Also, this section dis-

cusses the influences of the layer number and the sound

speed gradients treated in the simulation.

When modeling propagation in refractive water, the

source may be in an arbitrary layer. When the source is in

the top layer, the right-hand side of the linear equation {b}

is given by Eq. (4). When the source is in layer i, {b} is

given by:

bf g ¼

..

.

pinc rbið Þ
uinc rbið Þ
�pinc rbiþ1ð Þ
�uinc rbiþ1ð Þ

..

.

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

: (9)

Here, the topography is described by zbðxÞ ¼ �200–

300 exp ð�x2=6002Þ. The sound speed, density and attenua-

tion of the seabed were 1500 kg/m3, 1700 m/s, and 0.5 dB/k,

respectively. The source was placed at ð0 m; 0 m;�175 mÞ,
with a source frequency of 20 Hz. The computational

domain extends from x¼ – 1 km to x¼ 4 km, from y ¼ �2:5
km to y¼ 2.5 km and from z ¼ �518:75 m to z¼ 18.75 m.

Three SSPs treated in the simulations are shown in Fig. 9(a),

with gradients Dc ¼ 60, Dc ¼ 45, and Dc ¼ 30 m/s in the

region of –150 m< z < 0 m. Four cases with different layers

were considered. In the four-layered, three-layered, and

two-layered cases, the region of –150 m< z < 0 m was uni-

formly divided into three layers, two layers, and one layer

along the depth axis, respectively, with the sound speed in

each layer being the linear interpolation of the SSP (the

mid-value of the exact sound speeds at the upper and lower

boundaries of the layer). Below z¼�150 m, the sound

speeds were set to be 1470 m/s, 1485 m/s and 1500 m/s for

Dc ¼ 60, Dc ¼ 45, and Dc ¼ 30 m/s, respectively. For each

Dc, the sound speed in the one-layered case was consistent

with that below z¼�150 m in other cases.

Figure 9(b) displays the TL along the y¼ 0 m axis with

a receiver depth of –25 m for Dc ¼ 45 m/s, with the LIFE

model’s results shown in the solid black line as the refer-

ence. As the number of layers increases, the TL tends to

converge to the reference. Also, root mean square errors

(RMSEs) for different Dc are shown in Fig. 9(c), calculated

using the pressure from x¼ 0 km to x¼ 4 km. Overall, after

decreasing rapidly, RMSEs start to converge when the layer

thickness is about one wavelength (the thickness of layers

dividing the region where the sound speed gradient occurs),

FIG. 7. (Color online) Transmission loss in shallow water over the

Gaussian canyon within the y¼ 0 m, with subplots (a), (b), and (c) display-

ing scenarios of flat and corrugated surfaces, the latter oriented parallel and

perpendicular to the canyon axis, respectively.

FIG. 8. (Color online) Transmission loss in shallow water over the

Gaussian canyon within the x¼ 0 m, with subplots (a), (b), and (c) display-

ing scenarios of flat and corrugated surfaces, the latter oriented parallel and

perpendicular to the canyon axis, respectively.
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which means that the layer thickness should be less than one

wavelength to guarantee the accuracy in this case. Besides,

decreases in RMSEs are associated with decreases in Dc,

suggesting that larger Dc may require more layers to reduce

the influence of weak discontinuities. A layer thickness of

half wavelength or even quarter wavelength recommended

by West et al. (1991) and Jensen et al. (2011), for instance,

are suggested for SSP with larger gradients. The results

demonstrate the capability of the PFFT-ESM for propaga-

tion in refractive water.

IV. DISCUSSIONS ON COMPUTATIONAL
EFFICIENCIES

First, the feasibility of a fully 3D FE model for the pre-

sent problem is discussed. The time and RAM required by

the FE model depends on the degrees-of-freedom (DOF),

which also is the expansion coefficients to be solved. For the

Gaussian canyon with iso-velocity water, a trial of the fully

3D FE model was implemented. The physical domain was

discretized using linear tetrahedrons with an element size of

1/6 acoustic wavelength, composed of 2:842� 108 elements

FIG. 9. (Color online) (a) Sound speed profiles treated in the simulations of propagation in refractive water, (b) comparisons between the transmission loss

calculated by the PFFT-ESM with different layer schemes and that obtained by the LIFE model when y¼ 0 m and z¼�25 m for Dc ¼ 45 m/s, and (c) root

mean square errors (RMSE) as a function of the ratio of the acoustic wavelength to layer thickness for different Dc.

FIG. 10. (Color online) Random access memory and number of numerical operations required by the PFFT-ESM per iteration (blue dotted line) in compari-

son to those required by a direct ESM solver (red solid line).
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with a DOF number of 3:8385� 108. This number was sig-

nificantly larger than the number of unknowns in the PFFT-

ESM. Although existing commercial FE software optimizes

the iterative solver for the linear system, such a large DOF

requires tremendous computational resources, making the

fully 3D FE model remain computationally challenging for

the present problem to be run on a standard computer. The

trial ended up with the software crashing at the step of

matrix assembly due to insufficient RAM. Additional com-

putational resources, such as supercomputers or multi-

computer clusters, may be required to implement the fully

3D FE model. This is the reason why LIFE was alternatively

used as the benchmark.

Then, RAM required and numerical operations involved

in the PFFT-ESM per iteration are discussed by plotting

those as a function of the number of equivalent sources in

Fig. 10. For comparison purposes, the case of a direct ESM

solver is also shown in Fig. 10. From Sec. II B, it is known

that 3D convolution, the most numerically expensive opera-

tion step in the PFFT, costs OðNg log NgÞ operations.

Generally, Ng is on the same order as N. For all simulations

presented in this paper, double precision arrays are involved

in the calculations, with each element of the arrays requiring

8 bytes RAM to be stored. Therefore, the PFFT-ESM

requires Oð8N=1:048� 106Þ GB RAM to store the arrays

and approximately costs OðN log NÞ operations to calculate

each iteration. By contrast, the direct ESM needs OðN2Þ
operations to calculate the iteration, taking up Oð8N2=1:048

�106Þ GB RAM to store the corresponding arrays. When N
is large, memory savings and significantly reduced opera-

tions are achieved by incorporating the PFFT with the ESM,

enabling an efficient 3D numerical solution of the

Helmholtz equation that modern PC platforms can solve. It

should be noted that the distant source-receiver interaction

is represented by a locally weighted grid-to-grid interaction

that corresponds to the grids covering the source and the

receiver, which means that projection and interpolation

matrices are sparse. Therefore, the numerical cost is much

smaller than that of the finite difference method or the FEM,

which resorts to a similar grid throughout the physical

domain.

Next, Table I shows the average time per iteration for

the PFFT-ESM using the global FFT grid and the FFT sub-

grid in the same case. In the refractive simulation, the FFT

subgrid scenario is about three times faster than the global

grid scenario. Although the layer number quintuples from

the one-layered case to the five-layered case, the average

time per iteration only increases by 8 s using the FFT sub-

grid scheme. In the iso-velocity water simulation, the FFT

subgrid scheme only saves 13% computation time because

the size of the subgrid covering each layer approaches that

of the global grid. This demonstrates the computational effi-

ciency improved by the FFT subgrid scheme, particularly

when the water column needs to be represented by a combi-

nation of layering.

V. CONCLUSIONS

A 3D underwater acoustic propagation model based on

the equivalent source method has been developed, enabling

a direct numerical solution of the Helmholtz equation for

large-scale propagation at a reasonable computational cost.

The model expresses the solution of the Helmholtz equation

in terms of a superposition of the fields generated by equiva-

lent sources and iteratively solves the unknown coefficients

of these equivalent sources using the generalized minimum

residual method. By evaluating the matrix–vector product in

each iteration using the pre-corrected fast Fourier transform

technique, the computational cost can be reduced from

OðN2–3Þ to OðNg log NgÞ (where N and Ng are the numbers

of equivalent sources and FFT grid points, respectively). An

optimized FFT subgrid scheme has been proposed to

improve the model’s numerical efficiencies further, espe-

cially when multiple layers are required to divide the water

column, e.g., the sound speed is treated as a piece-wise con-

stant. The proposed model has been validated by compari-

son with the longitudinal invariant finite element model for

propagation in shallow water with a Gaussian canyon. The

versatility of the proposed model for showing rough scatter-

ing effects has been demonstrated by further presenting the

Gaussian canyon simulations with corrugated surface waves.

The results indicate that the along-canyon corrugated sur-

face waves result in weaker focusing effects while the

across-canyon corrugated surface waves induce more signif-

icant energy decays for acoustic waves propagating across

the canyon.
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