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Highlights
Predicting range-dependent underwater sound propagation from structural sources in shal-
low water using coupled finite element/equivalent source computations
Tengjiao He,Bin Wang,Shiqi Mo,Erzheng Fang

• A coupled FE /ES computation scheme is proposed to predict the range-dependent underwater sound propagation
from a structural source, providing benchmark-quality solutions and high numerical efficiency

• The proposed coupled FE /ES computation scheme can handle the coupling between the structural-acoustic
radiation and horizontally inhomogeneous waveguides.

• A novel multilayer acoustic–elastic ESM is developed to extend the ESM-based acoustic propagation model,
allowing sound speed inhomogeneities and range-dependent elastic seabeds to be accommodated

• The validity of an effective complex density fluid model is analyzed for calculating the waveguide field excited
by a structural source.
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A B S T R A C T
Predictions of underwater sound propagation (USP) from structural sources in complex shallow-
water environments are crucial for underwater navigation, communication, and localization.
Modeling range-dependent USP in shallow water remains challenging because structural acous-
tic radiation is coupled with complex waveguide physics. This paper presents a coupled finite
element (FE)/equivalent source (ES) computation scheme for predicting the range-dependent
USP from a structural source. The scheme involves coupled vibroacoustic FE/ES analyses
and waveguide-field ES computations. The former computes the structural vibration response
and reproduces the structural-acoustic radiation at arbitrary spatial positions. The coupled
vibroacoustic FE/ES analysis provides the input for the waveguide-field ES computations,
which couple the structural-acoustic radiation with the shallow-water environment. A multilayer
acoustic–elastic ES method (ESM) is developed to accommodate sound speed inhomogeneities
and a range-dependent elastic seabed. Numerical simulations demonstrate the interactions of
structural-acoustic radiation with two-dimensional topographies and internal solitary waves. The
proposed scheme is extended to three dimensions by combining the coupled vibroacoustic FE/ES
analysis with a pre-corrected fast Fourier transform-accelerated ESM. The results validate the
proposed scheme and demonstrate its benchmark-quality solutions and high numerical efficiency,
suggesting great application potential for optimizing the sonar performance at the preliminary
design stage.

1. Introduction
Control of underwater radiated noise (URN) from structural sources, such as surface vessels, unmanned underwater

vehicles, and autonomous underwater vehicles, is important in underwater acoustics. Precise predictions of underwater
sound propagation (USP) from such sources clarify the associated propagation behavior and allow the radiated noise
level of the source to be assessed. Thus, the primary task for noise control at the preliminary sonar design and
maintenance stages is to develop accurate USP predictions. Early work on predicting USP from a structural source
in free space considered acoustic radiation spreading without interference from boundary reflections. However, the
structural source often operates in shallow water. Complex environments further complicate the USP from structural
sources, as the URN becomes coupled with waveguide physics, such as boundary reflections, refraction from sound
speed profiles (SSPs), and even modal coupling effects from internal waves. Driven by a recognition of the increasing
demands for sonar performance assessments in complex oceans, there has been increasing interest in predicting USP
from a structural source in complex shallow-water environments.Zou et al. (2020); Jiang et al. (2020); Jia-xi et al.
(2021); Huang et al. (2019a,b); Petris et al. (2022); Wu et al. (2022)

Generally, USP predictions from structural sources require the structural vibration response to be integrated with
the USP computations based on the acoustic radiation from the source. The former relies on either analytical or fully
numerical approaches, such as the finite element (FE) method, while the latter is essentially an exterior Helmholtz
problem, typically solved by the Helmholtz–Kirchhoff integral (H-KI) approach. Coupled FE/H-KI computations have
been used for USP from structural sources such as underwater force-driven elastic structures,Zou et al. (2020); Jiang
et al. (2020); Jia-xi et al. (2021); Huang et al. (2019a,b); Petris et al. (2022) underwater pile drivers,Peng et al. (2021)
and surface vessels.Wu et al. (2022) This coupled computation scheme often utilizes the FE method to compute the
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distribution of normal particle velocities and sound pressures on an enclosure surrounding the source, over which
the H-KI is then implemented to solve the exterior Helmholtz problem. One attractive aspect of this approach is
that the geometry of the source is arbitrary in the computations. Nevertheless, the coupled FE/H-KI computations
conventionally handle range-independent USP because it relies on an efficient evaluation of Green’s function in ideal
shallow water with parallel boundaries. Complex shallow-water environments, such as range-dependent seabeds and
sound speed inhomogeneities, further complicate the corresponding Green’s function, thus dramatically increasing the
numerical cost.

This article describes a computation scheme for predicting USP from a structural source in complex shallow
water by directly monitoring the normal displacements on the source surface. In this way, the prediction of USP
can be implemented not only at the computational level, but also in practice by on-site measurements of structural
vibration responses with known information about the shallow-water environment. To achieve this goal, the FE method
is employed to compute the structural vibration response. The FE method is chosen because it outperforms other
approaches in terms of versatility for the various materials and geometries considered in the simulations, providing
simulation scenarios close to reality.Isakson and Chotiros (2011); Isakson et al. (2014) An appropriate USP model
is required to incorporate the FE method for propagating the structural-acoustic radiation through a nonuniform
waveguide. This model should be capable of handling both the varying waveguide boundaries and the sound speed
inhomogeneities in order to provide as realistic a shallow sea as possible.

Classical USP models include the coupled normal mode (CNM), parabolic equation (PE), ray tracing, finite
difference (FD) method, FE method, and spectral element method (SEM). CNM is a powerful tool for investigating
waveguide physics.Jensen et al. (2011); Decourcy and Duda (2020); Tu et al. (2022); Petnikov et al. (2022) It divides
the range-dependent waveguide into range-independent segments (step-wise approximations), and then couples all
segments by imposing boundary conditions across the interfaces between each pair of segments. A global coupling
matrix is then formed, by which the unknown modal coupling coefficients can be solved. Although simple source
excitations can be considered in CNM, those with complex structures and excitations may be difficult to handle if
their modal expansion coefficients are non-analytical. With the help of the paraxial approximation to the Helmholtz
equation, PE achieves numerical efficiency by ignoring the back-scattering from the waveguide, making it suitable for
handling both two- and three-dimensional (2D/3D) problems.Collins and Evans (1992); Sturm (2016); CA Oliveira
and Lin (2019); Oliveira et al. (2021) PE has no limitations on the source type, as long as the associated initial field
can be computed. Nevertheless, additional numerical treatment, such as the FE model covering the whole waveguide
cross-section, may be required to obtain such an initial field, which is then used to solve the differential equations
involved in PE. Jensen et al. (2011) Moreover, the approximations inherent in PE may lead to inaccurate USP from
structural sources in strongly range-dependent shallow water at arbitrary ranges.Jensen et al. (2011) As one of the
earliest methods to be applied to interpret USP behavior from the perspective of geometric acoustics, ray tracing relies
on a series expansion of the solution to the Helmholtz equation (high-frequency approximation).Jensen et al. (2011)
Recent work on this method Porter (2019) has demonstrated its capability to interpret realistic 3D propagation behaviors
found in experimental data. However, finding eigenrays is complicated in the case of complex structural sources and
topographies, especially in 3D scenarios. Additionally, ray tracing fails to capture detailed sound fields accurately when
the bottom derivatives are discontinuous. Porter (2019)

Approaches based on volume discretization, such as FD,Liu et al. (2021) FE,Isakson and Chotiros (2011); Isakson
et al. (2014) and SEM,Cristini and Komatitsch (2012); Bottero et al. (2016, 2018) are fully customized in terms of
material properties and the geometry of the computation domain, thus enabling USP predictions from arbitrary sources
in complex environments. The FD and FE results converge to the wave equation’s exact solution under appropriate
discretization schemes. Restricted by computation power, however, the problem size treated in FD and FE is typically
hundreds of acoustic wavelengths. FD and FE may require computer clusters or supercomputers to solve large-scale
USP problems, especially in 3D. The repetitive discretization and meshing make FD and FE unwieldy for Monte Carlo
simulations or parametric sweeps when optimizing the sonar performance at the preliminary design stage. Compared
with approaches based on volume discretization, boundary integral-based methods (BI-M), such as the boundary
element method (BEM) Godinho et al. (2001); Pereira et al. (2010); Li et al. (2019) and the equivalent source method
(ESM), can theoretically reach similar numerical precision at a reasonable numerical cost by only discretizing the
corresponding boundaries, rather than the whole computational domain. Within the framework proposed by Awtwai
et al., Abawi and Porter (2007) the capability of the ESM-based USP model for scattering from water surfaces,
refractions by SSPs, and even fully 3D large-scale problems was recently extended by He et al. He et al. (2020, 2021b,a)
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The ESM-based USP model inherits all of the advantages of BEM-based models, but circumvents the singularity
resulting from the Green’s function, resulting in simpler numerical implementations.

This article proposes a coupled FE/equivalent source (ES) computation scheme for predicting the range-dependent
USP from a structural source in complex shallow-water environments. A coupled vibroacoustic FE/ES analysis replaces
the structural-acoustic radiation with a set of ESs, in which the FE method computes the structural vibration response,
and the free-field ESM couples these responses with the FE computation to reproduce the structural-acoustic radiation
at arbitrary spatial positions. Next, a waveguide-field ES computation is performed using the incident-field quantities
evaluated by the coupled vibroacoustic FE/ES analysis, and the structural-acoustic radiation is propagated through the
shallow-water waveguide. A novel multilayer acoustic–elastic ESM (MLA-EESM) is developed to extend the ESM-
based USP model, allowing sound speed inhomogeneities and range-dependent elastic seabeds to be accommodated.
MLA-EESM is integrated into the proposed scheme to predict the 2D range-dependent USP from a vibrating infinite
cylindrical shell. These simulations demonstrate the interactions of structural-acoustic radiation with complex 2D
topographies and internal solitary waves. Parameter sweeps are performed to analyze the validity of an effective
complex density fluid model (ECDFM) Zhang and Tindle (1995) for calculating the waveguide field excited by a
structural source. With the ECDFM imitating the unconsolidated seabed, a 3D fluid USP model, namely pre-corrected
fast Fourier transform-accelerated ESM (PFFT-ESM), He et al. (2021a) is combined with the coupled vibroacoustic
FE/ES analysis. This allows the 3D USP from a vibrating shell in shallow water overlying double seamounts to be
predicted with reduced computational complexity. Finally, the numerical efficiency of the proposed coupled FE/ES
computation scheme is discussed. The remainder of this paper is organized as follows. Section 2 derives the formulae
used in the proposed methods, before Sec. 3 presents the results of numerical simulations. Finally, the conclusions to
this study are summarized in Sec. 4.

2. Methods
Before predicting the range-dependent USP from a structural source, we must model the vibroacoustics of an

elastic object. The FE model is sufficiently versatile for the various materials and geometries treated in the simulations
and is thus used to calculate the structural vibration response associated with the structural-acoustic radiation. After
evaluating the structural vibration response, a free-field ESM Koopmann et al. (1989) is used to couple this response
with the FE computation, solving the Helmholtz exterior problem by replacing the structural-acoustic radiation with
the superposition of fields generated by a set of ESs within the source. The established FE/ES analyses are then used
to evaluate the boundary field, which is required by an ESM-based USP model (described in Sec. 2.2) to propagate
the acoustic radiation in a given shallow-water environment. Also, this means that the range-dependent USP from
the structural source can be predicted by monitoring the normal displacement over the structure’s surface once the
shallow-water environment is known.
2.1. Coupled finite element/equivalent source analyses for vibroacoustics

As shown in Fig. 1, we describe the vibroacoustic problem as an elastic structure submerged into an unbounded,
homogeneous fluid, where the structural vibration domain Ω𝑠𝑡𝑟 and the acoustic radiation domain Ω𝑎𝑐𝑠 are represented
using FEs and ESs, respectively, with the interface Γ𝑠𝑡𝑟−𝑎𝑐𝑠 coupling these two parts. The equations of motion for
coupled FE/ES analyses can be written as Fahnline (2021)

[𝐊 + 𝑗𝜔𝐃 − 𝜔2𝐌]𝐮𝑛𝑜𝑑 = 𝐟𝑒𝑥𝑡 + 𝐟𝑎𝑐𝑠, (1)
where 𝐊, 𝐃, and 𝐌 are the stiffness, damping, and mass matrices, 𝐮𝑛𝑜𝑑 is the vector of nodal displacements, 𝐟𝑒𝑥𝑡 is the
external nodal forces, 𝐟𝑎𝑐𝑠 is the fluid loading induced by sound pressures, and 𝜔 is the angular frequency.

ESM uses a set of ESs over a conformal surface Γ′𝑠𝑡𝑟−𝑎𝑐𝑠 within the vibrating structure to generate the same
radiations from the structure Koopmann et al. (1989). The exterior sound pressure at 𝐫 is thus an integral of the fields
produced by all ESs Koopmann et al. (1989)

𝑝𝑎𝑐𝑠(𝐫) = 𝑗𝜌𝑤𝜔∫Γ′𝑠𝑡−𝑎
𝑠𝑎𝑐𝑠(𝐫′)𝐺Φ𝑤 (𝐫, 𝐫′)𝑑Γ′𝑠𝑡𝑟−𝑎𝑐𝑠, (2)
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Figure 1: Schematic of the coupled vibroacoustic FE/ES analyses.

where 𝑝𝑎𝑐𝑠 is the nodal sound pressure, 𝑠𝑎𝑐𝑠 is the ES strength, 𝜌𝑤 is the water density, and 𝐺Φ𝑤 (𝐫, 𝐫′) is the free-field
Green’s function given by Jensen et al. (2011)

𝐺Φ𝑤 (𝐫, 𝐫′) =
⎧

⎪

⎨

⎪

⎩

𝑗
4
𝐻 (2)

0 (𝑘𝑤|𝐫 − 𝐫′|), 2D
exp(−𝑗𝑘𝑤|𝐫 − 𝐫′|)

4𝜋|𝐫 − 𝐫′|
, 3D

(3)

where 𝐻 (2)
0 is the zero-order Hankel function of second kind, 𝑘𝑤 is the wavenumber in water. Discretization of the

superposition integral gives
𝐩𝑎𝑐𝑠 = 𝑗𝜌𝑤𝜔𝐆Φ𝑤𝐬𝑎𝑐𝑠. (4)

Here, 𝐩𝑎𝑐𝑠 represents the vector of nodal sound pressures. We now consider the nodal normal velocity 𝐯𝑎𝑐𝑠 and
write 𝐯𝑎𝑐𝑠 in terms of ES amplitudes, this yields Koopmann et al. (1989)

𝐯𝑎𝑐𝑠 = 𝐆𝑣𝑤𝐬𝑎𝑐𝑠, (5)
where the transfer matrix 𝐆𝑣𝑤 = ▽𝐆Φ𝑤 ⋅ �̂�𝑠𝑡𝑟−𝑎𝑐𝑠, with �̂�𝑠𝑡𝑟−𝑎𝑐𝑠 denoting the outward normal vector to Γ𝑠𝑡𝑟−𝑎𝑐𝑠.Substituting Eq. (5) back into Eq. (4) yields

𝐩𝑎𝑐𝑠 = 𝑗𝜌𝑤𝜔𝐆Φ𝑤𝐆𝑣𝑤−1𝐯𝑎𝑐𝑠. (6)
We then enforce the following continuity constraints across Γ𝑠𝑡𝑟−𝑎𝑐𝑠 to couple the vibration and radiation Fahnline

(2021)
{ 𝐟𝑎𝑐𝑠 = 𝐅𝐩𝑎𝑐𝑠,

𝐯𝑎𝑐𝑠 = 𝑗𝜔𝐔𝐮𝑛𝑜𝑑 ,
(7)

where 𝐅, the conversion matrix of sound pressure, transfers nodal values from the fluid to the structure, and 𝐔 is the
conversion matrix of displacement transferring nodal values from the structure to the fluid. By substituting Eq. (7)
back into Eqs. (6) and (1), a coupled FE/ES equation is given by

[

𝐊 + 𝑗𝜔𝐃 − 𝜔2𝐌 −𝐅
−𝜌𝑤𝜔2𝐆Φ𝑤𝐆𝑣𝑤−1𝐔 −𝐄

] [

𝐮𝑛𝑜𝑑
𝐩𝑎𝑐𝑠

]

=
[

𝐟𝑒𝑥𝑡
0

]

. (8)
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After solving the coupled equation for the nodal displacements, the ES calculations can solve radiations at any field
points in the acoustic domain Ω𝑎𝑐𝑠. This feature of the described FE/ES analyses allows it to incorporate an ESM-based
USP model for propagating the structural-acoustic radiation in a complex shallow-water acoustic environment. Here
we also give the far-field Green’s function by the Fraunhofer approximation for calculating the far-field pattern in the
free field:

𝐺Φ𝑓 (𝐫, 𝐫′) =
⎧

⎪

⎨

⎪

⎩

√

1
2𝜋𝑘𝑤

𝑒−𝑗𝜋∕4𝑒𝑗𝑘𝑤(𝑥′ cos𝜓+𝑧′ sin𝜓), 2D
1
4𝜋
𝑒𝑗𝑘𝑤(𝑥′ cos 𝜃 cos𝜓+𝑦′ cos 𝜃 sin𝜓+𝑧′ sin 𝜃), 3D

(9)

where 𝜃 and 𝜓 are the azimuth and elevation angles with respect to the acoustic center of the vibrating structure.
Note that the presented coupled FE/ES analyses assume the vibrating structure to be submerged by an unbound

fluid, meaning that the effects of waveguide boundaries (multiple scattering between the boundary and structure)
on vibroacoustic behaviors are neglected. Although such waveguide-boundary effects can be taken into account by
introducing the waveguide Green’s function into the coupled equation given by Eq. (8) (equivalent to additional mass
loading), this issue is out of the scope of this article and is not addressed here as we mainly focus on more general
situations when the underwater vibrating structure operates away from the sea surface and seafloor. For example,
a submarine needs to dive over hundreds of meters to prevent it from being detected by its enemy, simultaneously
keeping a safe distance from the seafloor to avoid being damaged by accidentally hitting on seamounts and other
complex topographies. Also, UUV or ROV often operate at a deep depth for oceanic resource explorations and navy
activities.
2.2. Equivalent source computation for propagating acoustic radiations in inhomogeneous

shallow-water waveguides
After solving the virboacoustics of an underwater structure using the coupled FE/ES analyses, we now consider an

ES computation for propagating acoustic radiations from the structure in inhomogeneous shallow-water waveguides.
An MLA-EESM for 2D range-dependent USP in shallow water with an elastic seabed is first established, followed
by a brief introduction of a fully 3D model, PFFT-ESM, incorporating an ECDFM Zhang and Tindle (1995) for 3D
range-dependent USP in shallow water with a low-shear-speed elastic seabed. The ESM-based USP model has no
limitations on the source type and is thus very suitable for considering sound fields excited by structural and multiple
sources.
2.2.1. Multilayer acoustic–elastic equivalent source method for 2D range-dependent sound propagation in

shallow water with an elastic seabed
As shown in Fig. 2, we consider a 2D range-dependent waveguide of 𝐼 fluid layers overlying an elastic seabed. The

sound speed and density of the 𝑖-th fluid layer are 𝑐𝑤𝑖 and 𝜌𝑤𝑖 (𝑖 = 1, 2,⋯ , 𝐼), respectively. The compressional and
shear wave speeds of the elastic seabed are 𝑐𝑝 and 𝑐𝑠ℎ, respectively, and the seabed density is 𝜌𝑠. Herein, 𝐫𝑏0 denotes
the position of the water surface, and 𝐫𝑏𝑖 represents the position of the interface between the 𝑖-th layer and its lower
layer. The Helmholtz equations governing the scalar potential Φ𝑤𝑖 (𝐫) in water and the scalar potential Φ𝑝(𝐫) and shear
potential Ψ𝑠ℎ(𝐫) in the seabed are Jensen et al. (2011)

[▽2 + 𝑘2𝑤𝑖 ]Φ𝑤𝑖 (𝐫) = 0, 𝐫 ∈ water (10a)

[▽2 + 𝑘2𝑝]Φ𝑝(𝐫) = 0, 𝐫 ∈ sediment (10b)

[▽2 + 𝑘2𝑠ℎ]Ψ𝑠ℎ(𝐫) = 0, 𝐫 ∈ sediment (10c)
where 𝐫 = (𝑥, 𝑧) is the position vector, 𝑘𝑤𝑖 = 𝜔∕𝑐𝑤𝑖 is the wavenumber in water, and 𝑘𝑝 = 𝜔∕𝑐𝑝 and 𝑘𝑠ℎ = 𝜔∕𝑐𝑠ℎ are
the compressional and shear wavenumbers in the seabed, respectively. The pressure-release boundary condition at the
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Figure 2: Schematic of multilayer acoustic–elastic equivalent source method, with the black, white, and red circles denoting
those ESs replacing the field reflected by the sea surface, the upper layer, and the lower layer, respectively. The green and
cyan circles represent those ESs producing the compressional and shear potentials in the seabed, respectively.

water surface, the continuity of pressure and normal displacement across the interface between two adjacent layers,
the continuity of the normal stress across the seabed interface, and the zero tangential stress at the seabed interface can
be expressed as

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑝(𝐫𝑏0 ) = 0, (𝑖 = 0)
𝑝(𝐫𝑏𝑖 )|− = 𝑝(𝐫𝑏𝑖 )|+, (1 ≤ 𝑖 ≤ 𝐼 − 1)

�̂� ⋅ 𝐮(𝐫𝑏𝑖 )|− = �̂� ⋅ 𝐮(𝐫𝑏𝑖 )|+, (1 ≤ 𝑖 ≤ 𝐼)
�̂� ⋅ 𝝉(𝐫𝑏𝐼 ) ⋅ �̂�|− = −𝑝(𝐫𝑏𝐼 )|+, (𝑖 = 𝐼)

�̂� × [𝝉(𝐫𝑏𝐼 ) ⋅ �̂�]|− = 0, (𝑖 = 𝐼)

(11)

where 𝐮 is the displacement, 𝝉 is the stress tensor, 𝑝 is the sound pressure, and �̂� represents the normal unit vector to
the corresponding boundary.

The proposed MLA-EESM is developed for range-dependent USP in shallow water over an elastic seabed. This
method expresses the solution to Eqs. (10a), (10b), and (10c) as a superposition of basis functions (Green’s functions)
with unknown coefficients. The coefficients are determined by imposing the boundary conditions defined in Eq. (11).
Herein, the scalar and shear potential Green’s functions, 𝐺Φ𝑤𝑖,𝑝

and 𝐺Ψ𝑠ℎ , satisfy Jensen et al. (2011)

[▽2 + 𝑘2𝑤𝑖 ]𝐺
Φ𝑤𝑖 (𝐫, 𝐫′) = 𝛿(𝐫 − 𝐫′), (12a)

[▽2 + 𝑘2𝑝]𝐺
Φ𝑝 (𝐫, 𝐫′) = 𝛿(𝐫 − 𝐫′), (12b)

[▽2 + 𝑘2𝑠ℎ]𝐺
Ψ𝑠ℎ (𝐫, 𝐫′) = 𝛿(𝐫 − 𝐫′), (12c)

with the 2D solutions Jensen et al. (2011)
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⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐺Φ𝑤𝑖 (𝐫, 𝐫′) = 𝑗
4
𝐻 (2)

0 (𝑘𝑤𝑖 |𝐫 − 𝐫′|),

𝐺Φ𝑝 (𝐫, 𝐫′) = 𝑗
4
𝐻 (2)

0 (𝑘𝑝|𝐫 − 𝐫′|),

𝐺Ψ𝑠ℎ (𝐫, 𝐫′) = 𝑗
4
𝐻 (2)

0 (𝑘𝑠ℎ|𝐫 − 𝐫′|).

(13)

where 𝐫′ is the position of the point source.
The displacement vectors in water and the elastic seabed are given by Abawi and Porter (2007)

𝐮(𝐫) =
⎧

⎪

⎨

⎪

⎩

1
𝜔2𝜌𝑤𝑖

▽Φ𝑤𝑖 (𝐫), 𝐫 ∈ water
1

𝜔2𝜌𝑠

[

▽Φ𝑝(𝐫) +▽ ×
[

0,Ψ𝑠ℎ(𝐫), 0
]

]

. 𝐫 ∈ sediment
(14)

In the elastic seabed, the relation between the stress tensor and the displacement in 2D is given by Abawi and Porter
(2007)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝝉𝑥𝑥 = (𝜆𝑠ℎ + 2𝜇)
𝜕𝐮𝑥
𝜕𝑥

+ 𝜆𝑠ℎ
𝜕𝐮𝑧
𝜕𝑧

,

𝝉𝑥𝑧 = 𝜇
(

𝜕𝐮𝑥
𝜕𝑧

+
𝜕𝐮𝑧
𝜕𝑥

)

,

𝝉𝑧𝑧 = (𝜆𝑠ℎ + 2𝜇)
𝜕𝐮𝑧
𝜕𝑧

+ 𝜆𝑠ℎ
𝜕𝐮𝑥
𝜕𝑥

,

(15)

where 𝜆𝑠ℎ = 𝜌𝑠(𝑐2𝑝 − 2𝑐2𝑠ℎ) and 𝜇 = 𝜌𝑠𝑐2𝑠ℎ are the Lame constants, and
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐮𝑥 =
1

𝜔2𝜌𝑠

(𝜕Φ𝑝

𝜕𝑥
−
𝜕Ψ𝑠ℎ
𝜕𝑧

)

,

𝐮𝑧 =
1

𝜔2𝜌𝑠

(𝜕Φ𝑝

𝜕𝑧
+
𝜕Ψ𝑠ℎ
𝜕𝑥

)

,
(16)

while in the water column, the displacement vector becomes
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐮𝑥 =
1

𝜔2𝜌𝑤𝑖

𝜕Φ𝑤𝑖
𝜕𝑥

,

𝐮𝑧 =
1

𝜔2𝜌𝑤𝑖

𝜕Φ𝑤𝑖
𝜕𝑧

.
(17)

In MLA-EESM, the waveguide field in the top fluid layer (𝑖 = 1) can be separated into the fields reflected by the
surface and by the second fluid layer. In the 𝑖-th layer (𝑖 > 1), the sound field is the summation of the fields reflected
by the 𝑖 − 1-th and the 𝑖 + 1-th layers. Accordingly, a set of ESs is placed above the sea surface at 𝐫0, replacing the
surface-reflected field. In the 𝑖-th fluid layer (1 < 𝑖), two sets of ESs are utilized, one above the layer’s upper boundary
at 𝐫2𝑖−2 and the other below the layer’s upper boundary at 𝐫2𝑖−1, replacing the fields reflected by the 𝑖−1-th and 𝑖+1-th
layers, respectively. In addition, the compressional and shear potentials require two sets of ESs above the elastic seabed
to produce the equivalent field in the seabed. Those representing the scalar and shear potentials are placed at 𝐫2𝐼 and
𝐫2𝐼+1, respectively. In this way, the sound pressure and normal displacement in the water column can be written as
Abawi and Porter (2007)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑝𝑤𝑖 (𝐫) =
𝑁
∑

𝑛=1
𝐺Φ𝑤𝑖 (𝐫, 𝐫2𝑖−2(𝑛))𝑠2𝑖−2(𝑛) +

𝑁
∑

𝑛=1
𝐺Φ𝑤𝑖 (𝐫, 𝐫2𝑖−1(𝑛))𝑠2𝑖−1(𝑛),

𝑢𝑤𝑖 (𝐫) =
𝑁
∑

𝑛=1
𝐺𝑢𝑤𝑖 (𝐫, 𝐫2𝑖−2(𝑛))𝑠2𝑖−2(𝑛) +

𝑁
∑

𝑛=1
𝐺𝑢𝑤𝑖 (𝐫, 𝐫2𝑖−1(𝑛))𝑠2𝑖−1(𝑛),

(18)
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the normal displacements in the seabed can be written as
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑢𝑝(𝐫) =
𝑁
∑

𝑛=1
𝐺𝑢𝑝 (𝐫, 𝐫2𝐼(𝑛))𝑠2𝐼(𝑛),

𝑢𝑠ℎ(𝐫) =
𝑁
∑

𝑛=1
𝐺𝑢𝑠ℎ (𝐫, 𝐫2𝐼+1(𝑛))𝑠2𝐼+1(𝑛),

(19)

and the stress tensors in the seabed are given by
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝜏𝑝𝑛𝑜𝑟 (𝐫) =
𝑁
∑

𝑛=1
𝐺𝜏𝑝𝑛𝑜𝑟 (𝐫, 𝐫2𝐼(𝑛))𝑠2𝐼(𝑛),

𝜏𝑠ℎ𝑛𝑜𝑟 (𝐫) =
𝑁
∑

𝑛=1
𝐺𝜏𝑠ℎ𝑛𝑜𝑟 (𝐫, 𝐫2𝐼+1(𝑛))𝑠2𝐼+1(𝑛),

𝜏𝑝𝑡𝑎𝑛 (𝐫) =
𝑁
∑

𝑛=1
𝐺𝜏𝑝𝑡𝑎𝑛 (𝐫, 𝐫2𝐼(𝑛))𝑠2𝐼(𝑛),

𝜏𝑠ℎ𝑡𝑎𝑛 (𝐫) =
𝑁
∑

𝑛=1
𝐺𝜏𝑠ℎ𝑡𝑎𝑛 (𝐫, 𝐫2𝐼+1(𝑛))𝑠2𝐼+1(𝑛),

(20)

where the subscript (𝑛) specifies the 𝑛-th ES of each set, 𝑠𝑛 is its amplitude, and𝑁 is the total number of each set of ESs.
Herein, 𝑝𝑤𝑖 and 𝑢𝑤𝑖 denote the sound pressure and the normal displacement in the 𝑖-th fluid layer, respectively. In the
elastic seabed, 𝑢𝑝 and 𝑢𝑠ℎ denote the normal components of the compressional and shear displacements, respectively,
𝜏𝑝𝑛𝑜𝑟 and 𝜏𝑠ℎ𝑛𝑜𝑟 denote the normal components of the compressional and shear stress tensors, respectively, and 𝜏𝑝𝑡𝑎𝑛and 𝜏𝑠ℎ𝑡𝑎𝑛 denote the tangential components of the compressional and shear stress tensors, respectively. According
to Eq. (14), the normal-displacement Green’s functions, 𝐺𝑢𝑤𝑖 (𝐫, 𝐫′), 𝐺𝑢𝑝 (𝐫, 𝐫′), and 𝐺𝑢𝑠ℎ (𝐫, 𝐫′), have the following
mathematical expressions

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝐺𝑢𝑤𝑖 (𝐫, 𝐫′) = 1
𝜔2𝜌𝑤𝑖

[

𝐧𝑥
𝜕
𝜕𝑥

+ 𝐧𝑧
𝜕
𝜕𝑧

]

𝐺Φ𝑤𝑖 (𝐫, 𝐫′),

𝐺𝑢𝑝 (𝐫, 𝐫′) = 1
𝜔2𝜌𝑠

[

𝐧𝑥
𝜕
𝜕𝑥

+ 𝐧𝑧
𝜕
𝜕𝑧

]

𝐺Φ𝑝 (𝐫, 𝐫′),

𝐺𝑢𝑠ℎ (𝐫, 𝐫′) = 1
𝜔2𝜌𝑠

[

− 𝐧𝑥
𝜕
𝜕𝑧

+ 𝐧𝑧
𝜕
𝜕𝑥

]

𝐺Ψ𝑠ℎ (𝐫, 𝐫′),

(21)

while the normal and tangential components of the stress tensors, 𝐺𝜏𝑝𝑛𝑜𝑟 (𝐫, 𝐫′), 𝐺𝜏𝑠ℎ𝑛𝑜𝑟 (𝐫, 𝐫′), 𝐺𝜏𝑝𝑡𝑎𝑛 (𝐫, 𝐫′), and
𝐺𝜏𝑠ℎ𝑡𝑎𝑛 (𝐫, 𝐫′), are given by

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝐺𝜏𝑝𝑛𝑜𝑟 (𝐫, 𝐫′) = 1
𝜔2𝜌𝑠

[

𝐧𝑥
2𝐴1 + 𝐧𝑧

2𝐵1 + 2𝐧𝑥𝐧𝑧𝐶1

]

,

𝐺𝜏𝑠ℎ𝑛𝑜𝑟 (𝐫, 𝐫′) = 1
𝜔2𝜌𝑠

[

𝐧𝑥
2𝐴2 + 𝐧𝑧

2𝐵2 + 2𝐧𝑥𝐧𝑧𝐶2

]

,

𝐺𝜏𝑝𝑡𝑎𝑛 (𝐫, 𝐫′) = 1
𝜔2𝜌𝑠

[

(𝐧𝑥
2 − 𝐧𝑧

2)𝐶1 + 𝐧𝑧𝐧𝑥(𝐵1 − 𝐴1)
]

,

𝐺𝜏𝑠ℎ𝑡𝑎𝑛 (𝐫, 𝐫′) = 1
𝜔2𝜌𝑠

[

(𝐧𝑥
2 − 𝐧𝑧

2)𝐶2 + 𝐧𝑧𝐧𝑥(𝐵2 − 𝐴2)
]

,

(22)
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where
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝐴1 =
[

(𝜆𝑠ℎ + 2𝜇) 𝜕
2

𝜕𝑥2
+ 𝜆𝑠ℎ

𝜕2

𝜕𝑧2

]

𝐺Φ𝑝 (𝐫, 𝐫′),

𝐵1 =
[

(𝜆𝑠ℎ + 2𝜇) 𝜕
2

𝜕𝑧2
+ 𝜆𝑠ℎ

𝜕2

𝜕𝑥2

]

𝐺Φ𝑝 (𝐫, 𝐫′),

𝐶1 = 2𝜇
𝜕2𝐺Φ𝑝 (𝐫, 𝐫′)

𝜕𝑥𝜕𝑧
,

𝐴2 =
[

− (𝜆𝑠ℎ + 2𝜇) 𝜕2

𝜕𝑥𝜕𝑧
+ 𝜆𝑠ℎ

𝜕2

𝜕𝑧𝜕𝑥

]

𝐺Ψ𝑠ℎ (𝐫, 𝐫′),

𝐵2 =
[

(𝜆𝑠ℎ + 2𝜇) 𝜕2

𝜕𝑧𝜕𝑥
− 𝜆𝑠ℎ

𝜕2

𝜕𝑥𝜕𝑧

]

𝐺Ψ𝑠ℎ (𝐫, 𝐫′),

𝐶2 = 𝜇
[

− 𝜕2

𝜕𝑧2
+ 𝜕2

𝜕𝑥2

]

𝐺Ψ𝑠ℎ (𝐫, 𝐫′).

(23)

In the above equations, 𝐧𝑥 and 𝐧𝑧 are the horizontal and vertical components of the unit normal vector �̂�. For
each interface at 𝑟𝑏𝑖 , consider a vector of field points 𝑟𝑏𝑖 (1), 𝑟𝑏𝑖 (2), ⋯, 𝑟𝑏𝑖 (𝑁). After substituting for the pressure,
displacement, and stress tensor in the boundary conditions given by Eq. (11) in terms of the ES amplitudes, this yields
a linear system coupling all fields generated by 2𝐼 + 2 sets of ESs

[𝐆]{𝐬}𝐓 = {𝐞}𝐓, (24)
where {𝐬}𝐓 is the unknown amplitude vector given by

{𝐬}𝐓 = {𝐬0, 𝐬1, 𝐬2, 𝐬3,… , 𝐬2𝑖−2, 𝐬2𝑖−1, 𝐬2𝑖, 𝐬2𝑖+1,… , 𝐬2𝐼−2, 𝐬2𝐼−1, 𝐬2𝐼 , 𝐬2𝐼+1}𝐓, (25)
and right-hand-side vector {𝐞}𝐓 is the incident field quantity composed of

{𝐞}𝐓 = {𝐞0, 𝐞1, 𝐞2,… , 𝐞2𝑖−1, 𝐞2𝑖,… , 𝐞2𝐼−1, 𝐞2𝐼 , 𝐞2𝐼+1}𝐓. (26)
In the above linear system, the global coefficient matrix [𝐆] can be written as

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐆
Φ𝑤1
0,0 𝐆

Φ𝑤1
0,1

𝐆
Φ𝑤1
1,0 𝐆

Φ𝑤1
1,1 −𝐆

Φ𝑤1
1,2 −𝐆

Φ𝑤1
1,3

𝐆
𝑢𝑤1
1,0 𝐆

𝑢𝑤1
1,1 −𝐆

𝑢𝑤1
1,2 −𝐆

𝑢𝑤1
1,3

⋱ ⋱ ⋱ ⋱

𝐆
Φ𝑤𝑖
𝑖,2𝑖−2 𝐆

Φ𝑤𝑖
𝑖,2𝑖−1 −𝐆

Φ𝑤𝑖+1
𝑖,2𝑖 −𝐆

Φ𝑤𝑖+1
𝑖,2𝑖+1

𝐆
𝑢𝑤𝑖
𝑖,2𝑖−2 𝐆

𝑢𝑤𝑖
𝑖,2𝑖−1 −𝐆

𝑢𝑤𝑖+1
𝑖,2𝑖 −𝐆

𝑢𝑤𝑖+1
𝑖,2𝑖+1

⋱ ⋱ ⋱ ⋱

𝐆
Φ𝑤𝐼
𝐼,2𝐼−2 𝐆

Φ𝑤𝐼
𝐼,2𝐼−1 𝐆

𝜏𝑝𝑛𝑜𝑟
𝐼,2𝐼 𝐆

𝜏𝑠ℎ𝑛𝑜𝑟
𝐼,2𝐼+1

𝐆
𝑢𝑤𝐼
𝐼,2𝐼−2 𝐆

𝑢𝑤𝐼
𝐼,2𝐼−1 −𝐆𝑢𝑝

𝐼,2𝐼 −𝐆𝑢𝑠ℎ
𝐼,2𝐼+1

𝐆
𝜏𝑝𝑡𝑎𝑛
𝐼,2𝐼 𝐆

𝜏𝑠ℎ𝑡𝑎𝑛
𝐼,2𝐼+1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(27)
In the above equations, the bold uppercase letters represent 𝑁 × 𝑁 transfer matrices with the entries calculated

using Eqs. (13), (21), and (22), the bold lowercase letters are the 1 ×𝑁 vectors, the subcript 𝑖,𝑙 of each transfer matrix
specifies the boundary field at 𝐫𝑏𝑖 produced by ES placed at 𝐫𝑙, i.e.,

𝐆𝑖,𝑙 = 𝐆(𝐫𝑏𝑖 , 𝐫𝑙). (28)
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For the source producing the incident field in the top fluid layer, {𝐞}𝐓 has the explicit expression:
{𝐞}𝐓 = {−𝐩𝑖𝑛𝑐(𝐫𝑏0 ),−𝐩𝑖𝑛𝑐(𝐫𝑏1 ),−𝐮𝑖𝑛𝑐(𝐫𝑏1 ), 𝟎,… , 𝟎

⏟⏟⏟
(2𝐼−1)×𝟎

}𝐓, (29)

while for the source placed in the 𝑖-th fluid layer (𝑖 > 1), 𝐞 becomes

{𝐞}𝐓 = {𝟎,⋯ , 𝟎
⏟⏟⏟
(2𝑖−1)×𝟎

,𝐩𝑖𝑛𝑐(𝐫𝑏𝑖−1 ),𝐮𝑖𝑛𝑐(𝐫𝑏𝑖−1 ),−𝐩𝑖𝑛𝑐(𝐫𝑏𝑖 ),−𝐮𝑖𝑛𝑐(𝐫𝑏𝑖 ), 𝟎,⋯ , 𝟎
⏟⏟⏟

(2𝐼−2𝑖−1)×𝟎

}𝐓, (30)

where 𝐩𝑖𝑛𝑐 and 𝐮𝑖𝑛𝑐 are the 1×𝑁 vectors of incident pressures and normal displacements at the corresponding boundary.
In this article, these quantities produced by a structural source are calculated using coupled FE/ES analyses introduced
in Sec. 2.1. After solving the linear system, the waveguide field in an arbitrary layer can be calculated using Eqs. (18)
and (19).
2.2.2. Pre-corrected Fast Fourier transform–accelerated equivalent source method for 3D range-dependent

sound propagation in shallow water with a low-shear-speed elastic seabed
To obtain a fully 3D ESM-based model for USP over an elastic seafloor with reduced computational complexities,

we alternatively use PFFT-ESM to solve 3D USP over an equivalent fluid seabed modeled by ECDFM, which
approximates the reflectivity of unconsolidated seabeds.

He et al. He et al. (2021a) have demonstrated the ability of PFFT-ESM for fully 3D range-dependent USP over
a fluid seabed. Similarly, PFFT-ESM handles sound speed inhomogeneities by dividing the water column into layers
and enables structural sources to excite the waveguide field. The linear system coupling all sets of ESs, which provide
replacements to the decomposed waveguide field in each fluid layer, is assembled by enforcing the continuities across
each interface between two layers. Each set of ESs satisfies 3D Green’s functions in PFFT-ESM, and a large-size linear
system to be solved is finally obtained. Aiming to save the computational cost of large-size matrix problems in 3D,
PFFT-ESM solves the linear system without actually assembling the dense coefficient matrix [𝐆]. This is achieved
using an iterative solver rather than a direct solver for the linear system and accelerating the computation of matrix–
vector product [𝐆]𝐬 in each iteration. PFFT is used to accelerate the computation of [𝐆]𝐬, converting the matrix–vector
multiplication to a convolution operation by projecting all ESs onto an FFT grid covering each fluid layer. PFFT reduces
the computational cost from 𝑂(𝑁3) required by the direct solver to 𝑂(𝑁 log𝑁) significantly, enabling the large-scale
3D USP problem to be solved on a standard computer. Details of PFFT-ESM can be found in Ref. He et al. (2021a).

Next, we use the ECDFM to imitate the unconsolidated, half-space seabed using an equivalent fluid seabed with
a complex density,Zhang and Tindle (1995) reducing the computational complexity for modeling the corresponding
shallow-water propagation. This means that PFFT-ESM is used to model USP over a low-shear-speed seabed using
the input seabed parameters given by ECDFM. Under the low-grazing angle and low-shear-speed assumptions, the
complex density of an equivalent fluid seabed to an unconsolidated seabed is given by Zhang and Tindle (1995)

𝜌′𝑠 = 𝜌𝑠

[(

1 − 2
𝑑21

)2
−
𝑗4
√

(1 − 𝑑22 )(𝑑
2
1 − 1)

𝑑41

]

, (31)

where 𝑑1 =
𝑐𝑤𝐼
𝑐𝑠ℎ

−
𝑗𝛼𝑠ℎ𝑐𝑤𝐼
𝜔

, and 𝑑2 =
𝑐𝑤𝐼
𝑐𝑝

−
𝑗𝛼𝑝𝑐𝑤𝐼
𝜔

, with 𝛼𝑠ℎ and 𝛼𝑝 representing the attenuation coefficients of the
shear and compressional waves in dB/m, respectively.

When dealing with the waveguide field excited by a structural source, the directionality determines where the
dominant propagating energy comes from by weighting the modal amplitudes. When high-order modes propagating at
large grazing angles are weighted with the dominant energy, the ECDFM may not be as accurate as for the monopole-
point-source excitation for which it was derived due to the low-grazing angle restriction. Discussion on the applicability
of ECDFM for a structural source is presented at the end of Sec. 3.1.2.
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Figure 3: Flowchart of coupled FE/ES computations for USP predictions from structural sources in complex shallow water.

2.3. Coupled FE/ES computation for modeling underwater sound propagation from a structural
source in the range-dependent shallow water waveguide

In summary, the coupled vibroacoustic FE/ES analyses first evaluate an elastic structure’s vibration response
and then give the incident-field quantities required by the ESM-based USP model. The linear system in Eq. (27) is
then assembled according to the procedure described in Sec. 2.2 for a given shallow-water environment. Finally, the
unknown vector of the linear system is solved to reproduce the waveguide field, which propagates the structural-acoustic
radiation in the shallow-water environment using Eqs. (18) and (19). Fig 3 shows a flowchart of the proposed coupled
FE/ES computation scheme.

3. Numerical simulations
This section describes a series of numerical simulations to evaluate the performance of the proposed methods. First,

to benchmark MLA-EESM and the proposed coupled FE/ES computation scheme, the results are compared with those
from an FE model for 2D range-dependent USP from a vibrating infinite cylindrical shell in shallow water overlying an
elastic Gaussian seamount and an elastic Gaussian canyon. Next, parametric sweeps are performed to investigate the
validity of the ECDFM for modeling the USP from a structural source in shallow water overlying a low-shear-speed
seabed. This allows the computational complexity of the corresponding 3D range-dependent USP to be dramatically
reduced using a 3D fluid USP model. Finally, simulations are conducted using the 3D range-dependent USP from a
vibrating shell in shallow water overlying double unconsolidated seamounts. These simulations are implemented using
a 3D fluid UPS model, i.e., PFFT-ESM, with the ECDFM imitating the low-shear-speed seabed.
3.1. 2D range-dependent USP from an infinite cylindrical shell

We first consider the 2D range-dependent USP from a force-driven, steel, infinite cylindrical shell overlying an
elastic Gaussian seamount in shallow water. Although such a simplified geometry is theoretical and unrealistic, it
provides fairly good approximations of the finite cylindrical shell vibrating with only circumferential modes excited and
dominated, which is vital for reproducing the vertical directionality of the cylindrical structure at theoretical stages. The
FE model is implemented using the commercial COMSOL Multiphysics software. The cylindrical shell has a radius
of 6 m and a thickness of 0.1 m. A triangular mesh with a maximum element size of 1/120 the acoustic wavelength is
used to discretize the shell, giving a detailed description of the vibration response. Such a meshing scheme guarantees
a convergent FE solution Isakson and Chotiros (2011); He et al. (2020, 2021b,a). The shell material is considered to
be structural steel with Young’s modulus of 2.09 × 1013 Pa, Poisson’s ratio of 0.269, and density of 7890 kg/m3. The
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domain inside the shell is a vacuum. The focal point of a normal force (50 N) is initially loaded at the inner wall of the
shell, at (5.9 m, 0 m).

To implement MLA-EESM, each set of ESs is placed on a conformal line offset from the corresponding boundary
by the same stand-off distance. The ESs are distributed at the conformal lines with an element length Δ between two
adjacent sources of 𝜆∕6 and a stand-off distance 𝑑𝑠 of 2Δ for the ESs representing the scalar potential and Δ for those
representing the shear potential. A detailed investigation of the ES configuration used in this study suggests that this
provides a reasonable compromise; thus, this configuration is used in all numerical experiments described below.
3.1.1. 2D coupled FE/ES analyses for vibro-acoustics

Before calculating the 2D range-dependent USP from the vibrating shell, we test the effectiveness of the coupled
FE/ES analyses for vibroacoustics. In replacing the structural-acoustic radiation, 360 ESs are uniformly distributed on
a circle of radius 4.8 m within the shell.

vacuum

water

PML

point force

steel shell

0.1 m

6 m

10 m

5 m

Figure 4: Schematic of the FE far-field prediction and the corresponding meshing scheme.
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Figure 5: The near-field radiation calculated by the FE model (left column) and the far-field pattern (right column)
predicted by the coupled vibroacoustic FE/ES analysis (green dotted line) at 150 Hz. The FE result (red solid line) is also
given for comparison purposes.

Fig 5 shows the near-field radiation calculated by the FE model and the far-field pattern predicted by the coupled
FE/ES analyses at 150 Hz. For comparison purposes, the FE far-field result is also given using the far-field calculation
in the COMSOL software (based on the H-KI approach). As for the FE far-field prediction, the solid mechanics
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Table 1
Parameters of the elastic seabed simulated and of the effective complex density fluid model.

𝑐𝑝 𝛼𝑝 𝑐𝑠ℎ 𝛼𝑠ℎ 𝜌𝑠 𝜌′𝑠
Units m/s dB/𝜆 m/s dB/𝜆 g/cm3 g/cm3

Seabed 1 2400 0.2 1200 0.5 2.1 /
Seabed 2 3000 0.2 1600 0.1 2.1 /
Seabed 3 1950 0.4 600 1 2.1 1.065 − 0.428𝑖
Seabed 4 3000 0.2 1500 0.1 2.4 1.003 − 0.987𝑖

and pressure acoustics modules are used to couple the structural vibration response with the acoustic radiation by
establishing an acoustic/solid coupling boundary at the shell surface. Fig 4 shows a diagram of the FE far-field
model and the corresponding meshing scheme. Triangular meshes with a maximum element size of 1/6 the acoustic
wavelength are used to discretize the circular water domain of radius 10 m. The computation domain is truncated by
perfectly matched layers (PMLs), composed of a mapping mesh of 40 layers of thickness 5 m. The far-field prediction
is consistent with the FE result, thus confirming the correct configuration of ESs for predicting the 2D range-dependent
USP in the next step.
3.1.2. 2D waveguide-field ES computation
Validation case for shallow water overlying an elastic Gaussian seamount

The coupled vibroacoustic FE/ES analyses give the incident-field quantities required by MLA-EESM (the right-
hand-side of the linear system 𝐆𝐬 = 𝐞), allowing us to calculate the range-dependent USP from the shell in complex
shallow-water environments. Fig 6 shows the shallow-water environment treated in the simulation. The computation
domain extends from 𝑥 = −0.1 km to 𝑥 = 10 km and from 𝑧 = 0 m to 𝑧 = −800 m. The topography of the seabed is a
Gaussian seamount, determined by 𝑧𝑏(𝑥) = ℎ0−ℎ1𝑒(−(𝑥−5000)

2∕𝛿2), where ℎ0 = −500 m, ℎ1 = −250 m, and 𝛿 = 2600.
In this simulation, two elastic seabeds are tested, labeled Seabed 1 and Seabed 2 in Table 1. The water column is
divided into four layers to accommodate the sound speed inhomogeneities. The top three layers form a thermocline
layer, and the bottom layer represents the isothermal layer, where the sound speed barely varies with depth. The sound
speeds from the top to the bottom water layers are 1524 m/s, 1512 m/s, 1500 m/s, and 1494 m/s, respectively. The
cylindrical shell is placed at 𝑧 = −100 m.

Note that all simulations were performed neglecting the influence of external hydrostatic pressure. Since this
article’s primary goal is to address the coupling between structural-acoustic radiation with inhomogeneous waveguides,
we mainly focus on the propagation characteristic, which is likely to be affected by the far-field pattern of the source.
The previous studies showed that hydrostatic pressure’s influence on the vibroacoustic behaviors of submerged shells
is significant for near-field radiation at low frequencies Pan et al. (2020). However, the far-field radiation remains
almost identical with and without the external hydrostatic pressure load Pan et al. (2020). The near-field radiation from
the source corresponds to high-order vibration modes, the energy from which couples with the high-order evanescent
modes. Nevertheless, the far-field radiation excites low-order propagation modes traveling at shallow grazing angles
with the horizontal. Thus its energy, which is barely affected by the hydrostatic pressure, can be trapped and dominated
within the waveguide. Other impacts of hydrostatic pressure, such as shifting the structural resonance frequency and
suppressing the radiation power Keltie (1986), are out-of-scope of this article and thus are not discussed to save space.

Excellent agreement with the FE results can be observed in Fig. 7, where the transmission loss (TL) is plotted
as a function of the horizontal range with a receiver depth of −150 m at 150 Hz, thus confirming the accuracy of the
proposed coupled FE/ES computation scheme and MLA-EESM. Fig 8 displays the USP from the cylindrical shell in the
whole computation domain, with the right and left columns giving the compressional and shear potentials, respectively.
The sediment fields are represented by half of the tensor matrix trace. Due to the modal cut-off associated with the
up-slope propagation and the downward refraction by the SSP, the interference pattern becomes weak as the sound
wave propagates across the seamount. The apparent energy leakage observed in the seabed confirms the modal cut-off
effect. Moreover, the unconsolidated seabed scenario (shear speeds slower than the water speed) exhibits evanescent
normal modes, with greater TL than for the consolidated seabed scenario (shear speeds faster than the water speed).
Propagating modes are associated with those rays traveling at subcritical grazing angles, and the supercritical sound
incidence causes evanescent modes. For the consolidated seabed, two types of perfect internal reflections occur at
low grazing angles (long ranges), corresponding to the compressional and shear waves, respectively. The near-perfect
Tengjiao He: Preprint submitted to Elsevier Page 13 of 25
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Figure 6: Schematic of the shallow-water environment considered in the simulation, with the horizontally stratified water
column overlying an elastic Gaussian seamount. The abscissa and ordinate of the plot represent the horizontal range and
the depth, respectively.
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Figure 7: Transmission loss comparisons between the FE solutions (red solid line) and the coupled FE/ES computations
(black dotted line) in shallow water overlying an elastic Gaussian seamount with a receiver depth of 𝑧 = −150 m at 150 Hz.
Two different seabed properties are considered: the unconsolidated (left column) and consolidated (right column) seabeds.
The abscissa and ordinate of these plots represent the horizontal range and transmission loss in dB, respectively.

reflectivity permits the propagating modes to be excited. By contrast, total transmission occurs at the shear-wave
intromission angle for the unconsolidated seabed, taking energy out of the system by compressional-to-shear energy
conversion. Consequently, the shear wave propagates in the sediment as a plane wave (see the second row of Fig. 8),
and the normal mode in water becomes evanescent.
Internal wave case

A shallow-water environment with a Gaussian canyon in the presence of internal solitary waves (ISWs) is now
considered. The elastic Gaussian canyon is determined by 𝑧𝑏(𝑥) = ℎ0 − ℎ1𝑒(−(𝑥−5000).

2∕𝛿2), where ℎ0 = −300 m,
ℎ1 = 250 m, and 𝛿 = 2600; the seabed material is consistent with the consolidated seabed in the previous simulations.
Fig 9 shows that the water column is divided into five layers, with the iso-velocity top and bottom layers distinguished
at 𝑧 = −130 m and 𝑧 = −250 m, respectively. Three layers in the middle represent the internal wave layers, each of
which is 40 m thick. The sound speed of the ISWs varies linearly from 1530 m/s to 1494 m/s. The shapes of the ISWs
are given by 75sech2[(𝑥 − 2000)∕1000]. Badiey et al. (2005) The shell is placed at 𝑧 = −150 m, and is driven by a
point force loaded at the right-hand-side wall (0◦) at 100 Hz.

First, a benchmark is established through comparisons with the FE model. The excellent agreement with the FE
model in Fig. 10 validates the proposed coupled FE/ES computation scheme for the current problem. Fig 11 compares
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Figure 8: Sound propagation over the elastic Gaussian seamount in the whole computational domain at 150 Hz, with the
upper and lower rows showing the results from the unconsolidated and consolidated seabed cases, respectively: (a). the
compressional potential, and (b). the shear potential. The abscissa and ordinate of these graphs represent the horizontal
range and the depth, respectively.

Figure 9: Schematic of the shallow water environment with an elastic Gaussian canyon in the presence of internal solitary
waves. The abscissa and ordinate of the graph represent the horizontal range and the depth, respectively.

the waveguide field with and without the ISWs. The ISWs induce fluctuations in the sound speed structure of the water
column, causing downward refractions that bend the acoustic rays toward the seabed and modal coupling. The former
is reflected by the detailed field pattern (corresponding to the region from 𝑥 = 1 km to 𝑥 = 3 km and from 𝑧 = −100 m
to 𝑧 = −300 m), and shifted to a steeper grazing angle to the canyon in the magnified plot of Fig. 11(a) compared with
that of Fig. 11(b). The modal coupling transfers energy from high- to low-order modes, creating a triangular ‘shadow
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Figure 10: Transmission loss comparison with the FE model (red solid line) in the case of shallow water overlying a Gaussian
canyon in the presence of internal solitary waves at 100 Hz, with the abscissa and ordinate representing the horizontal
range and the transmission loss in dB, respectively. The receiver and source depths are 275 m and −150 m, respectively.

zone’ in Fig. 11(a) (corresponding to the region above 𝑧 = −250 m from 𝑥 = 3 km to 𝑥 = 7 km), over which the
sound intensity is weaker than that in Fig. 11(b). Generally, as the sound propagates up-slope, mode cut-off occurs in
mode sequences from high to low orders. Therefore, one can observe evidence of the energy transfer toward low-order
modes by the high-order mode cut-off associated with the up-slope propagation around 𝑥 = 9 km in Fig. 11(b), which
is absent in Fig. 11(a). By contrast, Fig. 11(a) exhibits more pronounced leakage of low-order modes near 𝑥 = 10 km
than Fig. 11(b).

Figure 11: Sound propagation from the infinite cylindrical shell in shallow water overlying a Gaussian canyon with (a) and
without (b) internal solitary waves. The shell is placed at 𝑧 = −150 m, driven by a point force loaded at the right-hand-side
wall (0◦) at 100 Hz. The magnified plots display the detailed field in the region extending from 𝑧 = −100 m to 𝑧 = −300 m
and from 𝑥 = 1 km to 𝑥 = 3 km. The abscissa and ordinate of these graphs represent the horizontal range and the depth,
respectively.

Validity of ECDFM for calculating USP from a structural source in shallow water overlying a low-shear-speed
seabed

Next, we perform parametric sweeps to test the validity of the ECDFM for calculating the USP from a structural
source in shallow water overlying a low-shear-speed seabed. We consider two classical elastic seabed materials: sand
and limestone.Jensen et al. (2011) The seabed parameters are given in Table 1, labeled as Seabed 3 and Seabed 4.
The scenario considered here is a range-independent waveguide field excited by the same vibrating shell used in the
previous simulations. The water depth is 300 m, and the shell is placed at a source depth of 150 m. We define the
relative error 𝐸 of the waveguide fields with the ECDFM approximation over the propagation range as:
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E =

√

√

√

√

∑𝑀
𝑚=1 |𝑝𝐸𝐶𝐷𝐹 − 𝑝𝐸𝐿𝐴|2

∑𝑀
𝑚=1 |𝑝𝐸𝐿𝐴|2

, (32)

where 𝑝𝐸𝐿𝐴 and 𝑝𝐸𝐶𝐷𝐹 are the sound pressures calculated with the elastic seabed model and with the ECDFM,
respectively, and 𝑀 is the number of sound pressure samplings. The sound pressure samplings are taken over the
horizontal range from 0–10 km at a receiver depth of 150 m, with𝑀 = 1024. The parametric sweeps are performed for
𝜃𝑠 against𝐸, where 𝜃𝑠 is defined as the angle between the direction of the dominant structural acoustic radiation and the
seabed (see the upper column of Fig. 13 as an example of 𝜃𝑠 = 0◦). The left column of Fig. 12 gives the corresponding
results in both the sand and limestone cases, from which the angular dependency of 𝐸 can be observed. Overall, an
increase in 𝐸 is associated with increasing 𝜃𝑠, which coincides with the low-grazing angle approximation made in the
ECDFM. To illustrate this further, the right column of Fig. 12 displays the plane wave reflection coefficients of the
elastic seabed and the equivalent fluid seabed. The limestone case produces a larger 𝐸 than the sand case because the
fluid behavior does not adequately approximate the consolidated seabed’s reflectivity. Interestingly, both cases exhibit
a pronounced maximum in𝐸 at 𝜃𝑠 = 45◦, meaning that the maximum may be related to the source directionality rather
than the seabed type. To prove this further, Fig. 13(d) shows 𝐸 as a function of 𝜃𝑠 in the limestone case at 50 Hz and
150 Hz. Figs 13(a)–13(c) demonstrate the different directionalities of the shell vibrating at different frequencies with
𝜃𝑠 = 0◦. One can observe that 𝜃𝑠 corresponding to the maximum in 𝐸 changes with the frequency, and the maximum
vanishes in the 50 Hz case.
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Figure 12: The relative error 𝐸 of waveguide fields with the ECDFM approximation over the propagation range (left
column) and the plane wave reflection coefficient of the elastic seabed and the equivalent fluid seabed (right column).
The upper and lower rows give the relevant results in the sand and limestone cases, respectively. The abscissa of all these
plots represents the grazing angle, and the ordinates of the plots in the left and right columns are the relative error and
the reflection coefficient amplitude, respectively.

As the frequency increases, the source directionality becomes intense, with a main lobe carrying the dominant
radiation energy and several nearby side lobes. The side lobes also carry considerable radiation energies [see
Figs. 13(a)–13(c)]. As 𝜃𝑠 increases, the energy of the side lobes gradually leaks into the seabed at the supercritical
incidence. Moreover, the remaining energy carried by the main lobe propagates in the waveguide at a large subcritical
grazing angle, for which the ECDFM is invalid. Therefore, the maximum in 𝐸 may be associated with the main lobe
propagating at large subcritical grazing angles. However, once 𝜃𝑠 exceeds the seabed critical angle 𝜃𝑐 sufficiently,
both the main and side lobes are supercritically incident, so transmission is the dominant loss mechanism. This
may explain the decrease in 𝐸 with increasing 𝜃𝑠 above 45◦. Although the maximum in 𝐸 changes for different
source directionalities, 𝐸 increases overall as 𝜃𝑠 increases. This analysis suggests that the ECDFM is valid for
calculating the USP from a structural source in shallow water overlying a low-shear-speed seabed when the source
beam carrying the dominant radiation energy propagates at low grazing angles (𝜃𝑠 < 𝜃𝑐). Note that this conclusion is
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Figure 13: Directionalities of the shell vibrating at (a). 50 Hz, (b). 100 Hz, and (c). 150 Hz with 𝜃𝑠 = 0, and (d). The
relative error 𝐸 of waveguide fields with the ECDFM approximation over the propagation range at these frequencies. The
abscissa and ordinate of (d) are the grazing angle and the relative error.

based on the range-independent assumption. When a range-dependent seabed is considered, modal coupling, mainly
determined by topographies and seafloor compressional-wave speeds rather than seafloor elasticity (compressional-
to-shear conversion and shear-wave intromission), is likely to be the dominant loss mechanism. Therefore, the above
conclusion is valid for most range-dependent circumstances.
3.2. 3D range-dependent USP from a structural source
3.2.1. 3D coupled FE/ES analyses for vibroacoustics

Figure 14: Schematic of the shell model considered in the FE model. The upper and lower magnified plots illustrate the
ES distribution in the 3D case and the details of the point force loaded at the shell’s wall, respectively.

This section presents simulations of the 3D range-dependent USP from a structural source in a complex shallow-
water environment. As shown in Fig. 14, the 3D structural source is selected as a cylindrical shell with a semi-ellipsoid
cap on one end and a cone tail on the other. The shell thickness is 0.08 m. The cylinder is 40 m in length and has
a radius of 4 m. The equatorial and polar radii of the semi-ellipsoid are 4 m and 6 m, respectively. The cone has a
height of 14 m with top and bottom radii of 1 m and 4 m, respectively. The shell vibration response is calculated using
the solid mechanic module in COMSOL Multiphysics, and this response is used to couple the ES computation for
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reproducing the structural-acoustic radiation. The shell’s center is placed at the origin. The density, Young’s modulus,
and Poisson’s ratio of the structural steel are the same as for the 2D case. A pair of normal point forces of 100 N acting
in opposite directions (see the lower magnified figure in Fig. 14), loaded on the inner shell wall at (16 m, 4 m, 0 m)
and (16 m, -4 m, 0 m), drives the shell to vibrate. The meshing scheme uses tetrahedrons to discretize the computation
domain, with a maximum element size of 1/120 acoustic wavelengths.

Figure 15: Far-field pattern of the point-force-driven shell vibrating at 25 Hz. The radial distance represents the magnitude
of the normalized directionality.

After the coupled vibroacoustic FE/ES analyses, the incident field required by the 3D waveguide-field ES
computation is produced by replacing the structural-acoustic radiation with the fields generated by a set of ESs within
the shell. For this purpose, 500 ESs are uniformly distributed on a surface conformal to the shell with a scaling factor of
0.8 (see the upper magnified figure in Fig. 14). The ESs are located at the centers of boundary surface elements dividing
the conformal surface. Fig 15 shows the far-field pattern of the shell vibrating at 25 Hz. To model the 3D FE far-field
radiation, the tetrahedron mesh with a maximum element size of 1/6 acoustic wavelength is used to discretize a spherical
computation domain with a radius of 60 m. The spherical computation domain is truncated by PMLs composed of 40
layers of swept meshes. Again, the predictions from the coupled FE/ES analyses are in excellent agreement with the
FE results, confirming that the ES configuration and amplitudes can be used to evaluate the incident-field quantities
required by a 3D ESM-based USP model. Note that the vertical directionality of the vibrating shell exhibits two pairs
of sharp lobes at large grazing angles, the energy of which is likely to be attenuated by the supercritical incidence.
Additionally, the grazing angle of the vertical main lobe is very shallow. This indicates that the ECDFM is valid
for calculating the corresponding 3D USP from the current shell model vibrating at 25 Hz in shallow water over an
unconsolidated seabed. This reduces the corresponding computational complexity, as we need only to use a 3D fluid
USP model with the ECDFM.
3.2.2. 3D waveguide-field ES computation
Double seamount case

Based on the above analysis, the ECDFM can mimic the unconsolidated seabed, so the corresponding 3D range-
dependent USP from the vibrating shell can be calculated with reduced computational complexity using a 3D fluid
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Figure 16: Simulation set-up for the coupled FE/ES computation for USP from the vibrating shell in a three-layer shallow
water column overlying double unconsolidated seamounts.

USP model with the ECDFM. In this case, the PFFT-ESM is employed to calculate the 3D range-dependent USP
from the vibrating shell over double unconsolidated seamounts. Seabed 3 (see Table 1) is used, as modeled by the
ECDFM as an equivalent fluid seabed with a complex density (see the last column of Table 1). The discretization
scheme of PFFT-ESM follows the rule of a maximum element size of six acoustic wavelengths in the 𝑥-, 𝑦-, and
𝑧-directions. As shown in Fig. 16, the 3D range-dependent shallow water environment treated in this simulation
is a three-layer water column overlying the double-seamount topography. The seamounts are given by 𝑧𝑏(𝑥, 𝑦) =
ℎ0 + 70𝑒−(𝑥−𝑥0)

2∕(2𝑎20)−(𝑦−𝑦0)
2∕(2𝑏20) + 120𝑒−(𝑥−𝑥1)

2∕(2𝑎21)−(𝑦−𝑦1)
2∕(2𝑏21), where ℎ0 = −200 m, 𝑎0 = 𝑎1 = 300, 𝑏0 = 525,

and 𝑏1 = 750. For the near seamount, 𝑥0 = 1600 m, 𝑦0 = 7400 m, 𝑥1 = 1000 m, and 𝑦1 = 7000 m; for the distant
seamount, 𝑥0 = −1600m, 𝑦0 = 3400m, 𝑥1 = −1000m, and 𝑦1 = 3000m. The sound speeds in the top two water layers
decrease linearly from 1530 m/s to 1515 m/s with water depth, while the bottom water layer has a constant velocity of
1500 m/s, representing a classical summer profile. The shell is initially placed at a source depth of −100 m, with the
semi-ellipsoid cap toward the negative 𝑥− axis (corresponding to a source orientation of 𝜃 = 0◦ ). The computational
domain spans 6 km×11 km×225 m.

Fig 17(a) shows the 3D range-dependent USP produced by the shell vibrating at 25 Hz in different horizontal and
vertical planes. The ‘butterfly’ radiation pattern, featuring horizontal source directionality, can be observed at short
ranges in the 𝑧 = −150 m plane. For 𝜃 = 0◦, the butterfly-like radiation results in horizontal defocusing along the
𝑦-direction, which is intensified by the seamount scattering. This can be seen in the 𝑦 = 3 km and 𝑧 = 0 m planes.
Two slices at 𝑥 = 1 km and 𝑥 = −1 km show apparent modal cut-off behaviors associated with up-slope propagation
over the seamount. Figs 17(b) and 17(c) display the results with source orientations of 𝜃 = 40◦ and 𝜃 = 90◦ produced
by rotating the source horizontally. The different source orientations share very similar interference patterns in the 𝑦-𝑧
planes, which is caused by the near-omnidirectionality of the vibrating shell in this plane. However, when high-order
vibration modes are excited at higher frequencies, discrepancies are expected to emerge in the vertical plane with
different source orientations. With most radiation scattered by both the near and distant seamounts, the 𝜃 = 40◦ case
exhibits horizontal focusing along the 𝑦-axis. Note that the scattering from the near seamount interferes with that from
the distant seamount at long ranges, as can be seen in the slices at 𝑧 = 0 m in Fig. 17(b). The 𝜃 = 90◦ case is similar
to 𝜃 = 0◦, with horizontal defocusing as a result of the butterfly-like radiation and horizontal scattering by seamounts.

To further display the differences in the horizontal sound fields with different source orientations, Fig. 18 shows
the depth-averaged TL with source orientations of 𝜃 = 0◦, 𝜃 = 40◦, and 𝜃 = 90◦. The depth-averaging is performed
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Figure 17: 3D range-dependent USP from the shell vibrating at 25 Hz, with source orientations of (a). 𝜃 = 0◦, (b). 𝜃 = 40◦,
and (c). 𝜃 = 90◦. The shell (displayed in black) is located at (0 km, 0 km, −100 m). The results are given by 3D TL
contours, with the 𝑥 > −1 km region sliced at 𝑦 = 3 km and at 𝑧 = −150 m and then the 𝑥 > 1 km region sliced at
𝑦 = 7 km and at 𝑧 = −100 m.

at depth increments of 10 m. Despite the horizontal scattering, defocusing, and focusing effects observed from the
3D sound field analysis, the depth-averaged TL for 𝜃 = 0◦ shows the effects of horizontal refraction by the distant
seamount at 𝑦 = 7 km, which bends the right-half radiation beam towards the 𝑥-axis. The 𝜃 = 45◦ case exhibits
slight horizontal diffraction into shadow zones behind the distant seamount. Due to the butterfly-like radiation, only

Tengjiao He: Preprint submitted to Elsevier Page 21 of 25



Predicting range-dependent underwater sound propagation from structural sources in shallow water using coupled finite
element/equivalent source computations

Figure 18: Depth-average TL with source orientations of (a). 𝜃 = 0◦, (b).𝜃 = 40◦, and (c). 𝜃 = 90◦. The abscissa and
ordinate of these plots are the transverse and horizontal ranges, respectively.

the left-half radiation beam is scattered by the near seamount in the 𝜃 = 90◦ case. The above results demonstrate that
the proposed 3D coupled FE/ES computation can account for the 3D propagation effects associated with a structural
source, including horizontal scattering, refraction, and diffraction.

Although an N-2D computation can be implemented using the proposed 2D computation scheme, which is
beneficial for achieving high numerical efficiency, there are limitations to such N-2D simulations. Since N-2D
computation restricts the acoustic energy within a bearing plane and ignores the horizontal mode coupling across
different bearing planes, it fails to consider horizontal refractions, scattering, and diffraction. By contrast, the proposed
fully 3D computation scheme can accurately handle all these 3D propagation effects, which is very important when
realistic underwater topographies are considered, such as seamount, underwater canyon, wedge, etc.
3.3. Discussion on numerical efficiency

This section discusses the numerical efficiency of the proposed coupled FE/ES computation scheme by comparison
with a direct FE computation. The simulations described in this article were implemented using MATLAB (Matlab,
Natick, MA) on a computer with an Intel Core i9-10900K CPU and 96 GB RAM (Intel, Santa Clara, CA). The
proposed scheme is of a two-fold procedure, including a coupled vibroacoustic FE/ES analysis and a waveguide-field
ES computation for propagating the structural-acoustic radiation in shallow water. The numerical cost of the coupled
vibroacoustic FE/ES analyses is at 𝑂(𝑁2−3

𝐷𝑂𝐹𝑓
) + 𝑂(𝑁2−3

𝑒𝑞𝑓
), where 𝑁𝐷𝑂𝐹𝑓 and 𝑁𝑒𝑞𝑓 represent the degrees of freedom

(DOF) of the FE computation and the ES number for replacing the structural-acoustic radiation, respectively. Similarly,
the numerical cost of the waveguide-field ES computation depends on the ES number for replacing the waveguide field
(𝑁𝑒𝑞𝑤 ). Therefore, the total numerical cost of the proposed scheme is at 𝑂(𝑁2−3

𝐷𝑂𝐹𝑓
) + 𝑂(𝑁2−3

𝑒𝑞𝑓
) + 𝑂(𝑁2−3

𝑒𝑞𝑤
). On the

other hand, the direct FE computation couples both the radiation and propagation processes. Given the DOF in direct
FE computation (𝑁𝐷𝑂𝐹𝑑 ), the corresponding numerical cost is at 𝑂(𝑁2−3

𝐷𝑂𝐹𝑑
). It is worth mentioning that the ESM-

based USP model reduces the problem dimensions compared with the direct FE computation by only discretizing the
waveguide’s boundaries, and 𝑁𝐷𝑂𝐹𝑓 is significantly smaller than 𝑁𝐷𝑂𝐹𝑑 because the computational domain in the
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Table 2
Analysis of the numerical cost and the average computation time required by the proposed coupled FE/ES computation
scheme and the full FEM in the 2D computation case at 150 Hz.

Coupled FE/ES Direct FE
FE ES Waveguide-field ES FE

𝑁𝑢𝑛 2.29 × 106 3.6 × 102 6.627 × 104 2.937 × 107
𝑂 𝑂(1018) 𝑂(107) 𝑂(1014) 𝑂(1022)
𝑡 1 mins 10 s 0.23 s 18 mins 20 s 40 mins 10 s

coupled FE/ES analysis is only at the size of the structure while that in the direct FE computation is of thousands
of wavelengths. Therefore, it is anticipated that 𝑂(𝑁2−3

𝐷𝑂𝐹𝑓
) + 𝑂(𝑁2−3

𝑒𝑞𝑓
) + 𝑂(𝑁2−3

𝑒𝑞𝑤
) would be significantly lower than

𝑂(𝑁2−3
𝐷𝑂𝐹𝑑

), especially for 3D scenarios.
Table. (2) then analyses the numerical cost and the average computation time required by the proposed coupled

FE/ES computation scheme and the direct FE computation in the 2D case at 150 Hz (Gaussian seamount case). As
expected,𝑁𝐷𝑂𝐹𝑑 is at four order of number higher than𝑁𝐷𝑂𝐹𝑓 ,𝑁𝑒𝑞𝑓 , and𝑁𝑒𝑞𝑤 . Therefore, the direct FE computation
is more numerically expensive than the proposed scheme, taking almost two times the computation time.

As for the numerical efficiency of the proposed scheme for the 3D simulation, the most numerically expensive step
is PFFT-ESM. Further details about the discussion on the numerical efficiency of PFFT-ESM are presented by He
et al. He et al. (2021a). The conclusion is that a direct FE computation remains computationally challenging for the
present problem to be run on a standard computer, while the proposed scheme incorporating PFFT-ESM costs about
𝑂(𝑁𝑒𝑞𝑤 log𝑁𝑒𝑞𝑤 ) operations, enabling the present fully-3D problem to be solved. The iterative tolerance was set to be
5 × 10−3, and the PFFT-ESM converged after 431 iterations, which took about 5 hours.

4. Conclusions
This article has presented a coupled FE/ES computation scheme for predicting the range-dependent USP from a

structural source in complex shallow water. The proposed scheme includes a coupled vibroacoustic FE/ES analysis for
replacing the structural-acoustic radiation with a set of ESs within the source and a waveguide-field ES computation
for propagating the structural-acoustic radiation in shallow water.

Simulations have demonstrated the validity and capability of the proposed scheme for coupling structural acoustic
radiation and complex ocean environments. The 2D simulations validated the proposed scheme, confirming it provides
benchmark-quality solutions and high numerical efficiency. Parameter sweeps were performed to explore the validity of
the ECDFM for calculating the waveguide field excited by a structural source over a low-shear-speed elastic seabed. The
analysis suggests that acceptable results can be obtained by a fluid USP model with the ECDFM when the main lobe of
the radiation is subcritically incident. Based on these results, the proposed scheme was extended to 3D range-dependent
USP from a vibrating shell over a double unconsolidated seamount. The modal cut-off associated with the up-slope
propagation and the horizontal scattering by the seamount indicate that the presented 3D results are reasonable. This
article has demonstrated the potential of the proposed coupled FE/ES computation scheme to be a useful tool in the
preliminary design and optimization of sonar performance.

The original contributions of this work are:
• A coupled FE/ES computation scheme has been proposed to model the range-dependent acoustic propagation

from a vibrating structural source in both 2D and 3D, with the capability for coupling structural-acoustic radia-
tions with horizontally inhomogeneous waveguides. This feature makes the proposed scheme significant, as most
existing hybrid algorithms can only handle horizontally homogeneous shallow water acoustic environments.

• A novel multilayer acoustic–elastic ESM is developed to extend the ESM-based acoustic propagation model,
allowing sound speed inhomogeneities and range-dependent elastic seabeds to be accommodated.

• The validity of ECDFM has been analyzed for calculating the waveguide field excited by a structural source,
suggesting that a fluid sound propagation model can incorporate with the ECDFM for approximating the
reflectivity of unconsolidated seafloor once the main lobe of the radiation is subcritically incident.
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