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ABSTRACT

Accurate modeling of sound propagation in ice-covered ocean environments can help with interpreting discrepancies between predictions
and experimental observations in the changing Arctic Ocean; this is advantageous for environmental conservation, resource exploration, and
naval applications. Building on the recent development of the equivalent-source (ES) method (ESM), herein, an ESM-based sub-ice model
(ESM-SUBICE) is presented for wave propagation in an ice-covered ocean acoustic environment. The presented model solves exact govern-
ing equations for acoustic–elastic propagation in an ice-covered waveguide by expressing the wave solution in terms of a field superposition
produced by several sets of ESs. Their unknown amplitudes are solved by strictly enforcing additional ice-layer boundary conditions. ESM-
SUBICE achieves high efficiency using a water–seabed Green’s function to automatically satisfy the boundary conditions at this interface. By
further dividing the ocean environment into layers, ESM-SUBICE is extended for more general situations including stratified sound-speed
structures and seabed range dependencies. ESM-SUBICE is benchmarked against a finite-element model, and it is found to produce high-
quality solutions with high efficiency. Transmission-loss predictions for elastic, fluid, and free-surface ice representations in different ocean
environments are compared to examine the effect of ice elasticity on propagation and scattering. The results suggest that the fluid representa-
tion is adequate for deep-water environments where the seabed is soft and the surface duct effect is insignificant; otherwise, for accurate pre-
dictions, the ice elasticity should be considered.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0144919

I. INTRODUCTION

Recent years have seen increased concern about the acoustic
environment in the ice-covered Arctic Ocean.1–4 Various types of
natural source contribute to this noise, including marine fauna,5,6

earthquakes,7 ice movements,8,9 and iceberg collapse.10,11 There are
also many anthropogenic noise sources in this region, including
those induced by resource exploration,12 scientific inves-
tigations,13–16 and naval activities. Furthermore, the acoustic field is
complicated by the interaction of sound waves with the ice cover,
which not only reflects sound but also transfers acoustic energy to
elastic waves traveling along the ice.17 Being able to accurately model
sound propagation in an ice-covered ocean environment is beneficial

for acoustically monitoring underwater activities and mitigating
anthropogenic noise to protect marine fauna from adverse impacts.

Nevertheless, accurately modeling sub-ice sound propagation
requires consideration of the ice cover’s elastic characteristics, includ-
ing reflectivity, loss mechanisms, and range-dependent thickness.
Compared to a common ocean scenario with a pressure-release sur-
face, this makes the modeling work challenging. The acoustic–elastic
interactions at the ice–water interface involve reflection, transmission,
energy conversion between compressional and shear waves, and re-
radiation back to the water column.17,18 When the ice-layer thickness
varies with propagation range due to seasonal changes, the acoustic–
elastic interactions can be complicated further, as acoustic modal cut
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off and leaky-elastic-wave behaviors may occur. Therefore, the elastic-
ity of the ice should be carefully considered in any sub-ice propagation
model to accurately predict received sound levels in a sub-ice ocean
channel.

The current models for sub-ice sound propagation can be divided
into two branches. The first treats the ice layer as a reflective interface
such that the acoustic interaction with the sea ice can be modeled
using an effective reflection coefficient. Examples include: ray mod-
els,19,20 which involve a high-frequency, asymptotic approximation of
the wave solution to the Helmholtz equation; and the perturbation
method,21 which is based on the normal mode theory. Ray models are
highly efficient and capable of dealing with range-dependent prob-
lems. However, their accuracy for sub-ice sound propagation depends
on the model that is used for the ice–water reflection coefficient; this is
inadequate for proper modeling of acoustic–elastic behaviors, as ray
models do not include the elastic wave field.

The second broad class of model directly considers the solid elas-
tic characterization of the sea ice and couples the solid mechanics and
pressure acoustics by enforcing proper fluid–solid boundary condi-
tions. Collis et al. used the elastic parabolic equation (PE)—a classic
method widely applied in underwater acoustics—to model sub-ice
sound propagation;22 they derived rigorous governing equations for
seismo-acoustic propagation in a stratified ice-covered ocean and gen-
erated evolutionary solutions in the solid and the fluid using the para-
xial approximation. The elastic PE is numerically efficient and
versatile for handling sound-speed inhomogeneities; however, one-
way solutions provided by the elastic PE are inadequate when back-
scattering is significant, especially for reverberation modeling.23

Additional numerical treatments are, thus, required to obtain two-way
PE solutions,24,25 and this undoubtedly intensifies the computational
cost.

There are also fully numerical methods for modeling sub-ice
sound propagation. The finite-difference method (FDM), for instance,
has been used to interpret frequency-dependent behaviors of the scat-
tered field from a rough ice layer.26 Additionally, the finite-element
method (FEM) has been used to investigate the possibility of replacing
the elastic ice cover with a pressure-release surface in the modeling of
sub-ice reverberation.18 Both the FDM and FEM are highly versatile,
as they are fully customizable in terms of the media properties and
boundary geometries considered in the simulations. These methods
provide solutions that converge to the exact wave solution, and they
can, thus, be used as benchmarks for other approaches. Nevertheless,
their main drawback is the massive computational burden that results
from their basis in volume discretization. As an alternative, many
researchers have attempted to reduce computational complexity by
simplified modeling of the elastic layer as an effective fluid27 or a
pressure-release surface;28 this has enabled many acoustic-propagation
models to handle the sub-ice situation.29–31 However, using an effec-
tive approximation of the ice cover can result in discrepancies from
experimental observations (in general, higher received sound levels).
This is because the ice cover’s reflectivity tends to be overpredicted,
especially when rough ice–water interfaces are considered.21

In this work, we sought to develop a numerical model that pro-
vides benchmark-quality solutions but solves the exact governing
equation for acoustic–elastic propagation more rapidly than volume-
discretization-based approaches. Boundary-integral-based methods
are promising candidates to achieve this goal because they explicitly

solve the wave equation by only discretizing the treated boundaries.
Examples of such approaches include the boundary-element method
(BEM) and the equivalent-source method (ESM);32 each of these has
demonstrated its ability to solve complex ocean acoustic prob-
lems.33–39 However, ESM outperforms BEM in terms of its simpler
numerical implementation and the avoidance of a singularity in
Green’s function.32

Here, we present an ESM-based sub-ice model (SUBICE),
namely, ESM-SUBICE, for sound propagation in an ice-covered ocean
environment. Exact governing equations for acoustic–elastic propaga-
tion are established, strictly enforcing the zero-traction condition at
the air–ice interface and the continuity and zero-shear stress condi-
tions across the ice–water interface. ESM-SUBICE solves the exact
wave equation by expressing the solution in terms of the field superpo-
sition by equivalent sources (ESs) with unknown amplitudes. Five sets
of ESs are used to replace the primary (P) and secondary (S) waves
excited by sound: those reflected by the air–ice interface and those
reflected by the ice–water interface. To handle more general situations,
including sound-speed inhomogeneities in the water column, the
ocean is divided into layers in which the sound speed is piecewise con-
stant. Each water layer requires two sets of ESs, one above and the
other below the layer’s upper and lower interfaces, respectively, to
replace the reflections by the adjacent layers. The final set of ESs is
chosen to satisfy the water–seabed Green’s function,40,41 automatically
enforcing the continuity of pressure and normal displacement across
this interface. In doing so, ESM-SUBICE achieves additional numeri-
cal efficiency without actually deploying the ESs that are used to deal
with the water–seabed interface. A global coupling linear system is,
thus, assembled by imposing the ice-layer boundary conditions and
the continuity conditions across all adjacent water layers, through
which all ES amplitudes can be solved.

ESM-SUBICE is benchmarked against FEM; solutions are gener-
ated for the elastic, fluid, and free-surface ice representations in differ-
ent underwater environments to establish baseline comparisons of the
transmission losses (TLs) in these settings and to discuss the applica-
bility of effective ice representations. Wavenumber-spectrum analyses
are presented to interpret the effect of ice elasticity on propagation and
scattering from the modal perspective. Furthermore, ESM-SUBICE is
used to obtain time-domain solutions via the Fourier synthesis to qual-
itatively investigate scattering from the rough ice–water interface.

The remainder of this paper is organized as follows: Sec. II
presents the mathematical formulation of the methods, Sec. III
presents the results of the numerical simulations, and conclusions are
drawn in Sec. IV.

II. METHODS

The following analysis considers the exact wave equations gov-
erning the acoustic–elastic propagation in an ice-covered waveguide.
The governing equations are given in terms of scalar and shear poten-
tials, which are equivalent to those based on the displacement field.
Subsection 1 of the Appendix gives the derivation of the potential-
based wave equations from the exact governing equations of displace-
ment field. The frequency formulations are presented, with time
convention ejxt , where x is the angular frequency, t is the time, and
j ¼ ffiffiffiffiffiffi�1

p
. All the quantities represented by upper-case bold letters are

matrices, and those by lower-case bold letters are vectors.
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A. ESM-SUBICE for the wave propagation
in an ice-covered stratified ocean waveguide

As shown in Fig. 1, we consider a multi-layer ocean waveguide
covered by a range-dependent, elastic ice layer. The waveguide is
divided into Iþ 1 layers. A fluid seabed is assumed here for simplicity.
We specify the ice cover to be the zeroth layer. The ice compressional

and shear wave speeds are cp ¼
ffiffiffiffiffiffiffiffiffiffi
kshþ2l
qice

q
and csh ¼

ffiffiffiffiffi
l
qice

q
, respectively,

where ksh and l ¼ are the Lame constants, and qice is the ice density.
The water column is of I – 1 layers, and the ith layer (0 < i < I) has a
sound speed of cwi and a density of qwi

. The Ith layer is the fluid sea-
bed of sound speed cb and density qb. The upper and lower boundaries
of the ith layer are placed at rbi and rbiþ1 , respectively. The Helmholtz
equations governing the scalar potentials, UpðrÞ in the ice, UwiðrÞ in
water, and UsðrÞ in the seabed, and the shear potential, WshðrÞ in the
ice, are given by

r2 þ k2p
h i

UpðrÞ ¼ 0; r 2 ice layer;

r2 þ k2sh
� �

WshðrÞ ¼ 0; r 2 ice layer;

r2 þ k2wi

h i
UwiðrÞ ¼ 0; r 2 water;

r2 þ k2s
� �

UsðrÞ ¼ 0; r 2 sediment;

8>>>>>>><
>>>>>>>:

(1)

where r ¼ ðx; zÞ is the position vector, kp ¼ x=cp and ksh ¼ x=csh
are the ice compressional and shear wavenumbers, respectively,
kwi ¼ x=cwi is the water wavenumber, and ks ¼ x=cs is the seabed
wavenumber. The boundary conditions at each interface at rbi can be
expressed as

n̂ � sðrb0Þ � n̂j� ¼ 0; ði ¼ 0Þ;
n̂ � sðrb0Þ � n̂

� �j� ¼ 0; ði ¼ 0Þ;
n̂ � sðrb1Þ � n̂j� ¼ �pðrb1Þjþ; ði ¼ 1Þ;
n̂ � sðrb1Þ � n̂

� �j� ¼ 0; ði ¼ 1Þ;
n̂ � uðrbiÞj� ¼ n̂ � uðrbiÞjþ; ð1 � i � IÞ;
pðrbiÞj� ¼ pðrbiÞjþ; ði ¼ IÞ;

8>>>>>>>>><
>>>>>>>>>:

(2)

where u is the displacement, s is the stress tensor, p is the sound pres-
sure, and n̂ denotes the normal unit vector to the corresponding
boundary. The first two equations in Eq. (2) represent the zero traction
at the air–ice interface (vanishing normal and tangential stresses),
while the remaining refer to the continuity of normal stress across the
ice–water interface, zero tangential stress at the ice–water interface,
continuity of pressure and normal displacement across the ice–water
interface, and each interface between two adjacent fluid layers, respec-
tively. ESM-SUBICE expresses the solution to Eq. (1) as a superposi-
tion of basis functions (Green’s functions) with their unknown
coefficients solved by imposing the boundary conditions defined in
Eq. (2). Herein, the scalar and shear potential Green’s functions,
GUp;wi ;s

andGWsh , satisfy

r2 þ k2p
h i

GUpðr; r0Þ ¼ dðr� r0Þ; r 2 ice layer;

r2 þ k2sh
� �

GWshðr; r0Þ ¼ dðr� r0Þ; r 2 ice layer;

r2 þ k2wi

h i
GUwi ðr; r0Þ ¼ dðr� r0Þ; r 2 water;

r2 þ k2s
� �

GUsðr; r0Þ ¼ dðr� r0Þ; r 2 seabed:

8>>>>>>><
>>>>>>>:

(3)

The first step of ESM-SUBICE is to decompose the waveguide
field. In the elastic ice layer, the scalar and shear fields can be separated
into the primary and secondary waves (P and S waves) excited by
sound (those induced by the sound wave interacting with the ice–
water interface) and those reflected by the air–ice interface. The scalar
field in the ith water layer consists of the reflections by the i – 1th and
iþ 1th layers. Since an infinite, half-space fluid seabed is assumed, the
field in the sediment is solely dominated by the water–seabed trans-
mission from the I – 1th layer.

After the field decomposition, each separated component of the
waveguide field is replaced with a set of equivalent sources (ESs) that
are placed either above or below the corresponding boundary, as
shown in Fig. 1. For the elastic wave propagation within the ice, two
sets of ESs below the ice–water interface are used to replace the sound-
generated P and S wave, respectively, one at r2 and the other at r3. To
reproduce the P and S wave reflections by the air–ice interface, ESs
above the air–ice interface at r0 and r1 are deployed, respectively.
Green’s function of each elastic wave ES is given by

GUpðr; r0Þ ¼ j
4
Hð2Þ

0 ðkpjr� r0jÞ;

GWshðr; r0Þ ¼ j
4
Hð2Þ

0 ðkshjr� r0jÞ;

8>><
>>: (4)

where r0 ¼ ðx0; z0Þ is the ES position. To reproduce the acoustic prop-
agation in the water column, the ith fluid layer requires two sets of
ESs, one above the layer’s upper boundary at r2iþ2 and the other below
its lower boundary at r2iþ3, to replace the reflections by the last and
next layers, respectively. If the fluid seabed is range independent, only

FIG. 1. Schematic of ESM-SUBICE for the range-dependent sound propagation in
an ice-covered ocean waveguide with horizontally stratified media. The black circles
denote those ESs replacing the reflections by the ice cover and by the adjacent
upper fluid layers. The red circles denote those ES reproducing the reflection by
the adjacent lower fluid layer. The green and orange circles represent those ESs
generating the compressional and shear potentials in the ice cover, respectively.
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one set of ESs above the I – 1th interface at r2I is required, Green’s
function of which automatically satisfy the water–seabed boundary
condition defined by Eq. (2). By doing this, Green’s function of each
ES that replaces sound propagation in the ith layer is given by

GUwi ðr; r0Þ ¼

j
4
Hð2Þ

0 ðkwi jr� r0jÞ; ð1 � i < I � 1Þ;
j
4

"
Hð2Þ

0 ðkwI�1 jr� r0jÞ;

þ
XQ
q¼0

aqH
ð2Þ
0 ðkwI�1 jr� rqjÞ

#
; ði ¼ I � 1Þ;

8>>>>>>>>>><
>>>>>>>>>>:

(5)

where GUwI�1 is the half-space water–seabed Green’s function, which
can be calculated using the complex image method (CIM).40,41 The
first term of GUwI�1 is the direct wave propagation from the source,
and the second term represents the water–seabed reflection generated
by complex image sources. In the above formula, q is the order of
image source, Q is the total number of image sources, and aq and rq
are the amplitude and position of the qth image source. We calculate
aq and aq through a nonlinear optimization that matches the exponen-
tial summation with the plane wave reflection coefficient of seabed
using a Levenberg–Marquard method. Details about the complex
image method are referred to in Sec. IIB.

After all ES configurations are settled, we, then, write the bound-
ary conditions defined in Eq. (2) in terms of ES amplitudes. Since
GUwI�1 automatically satisfies the water–seabed boundary condition,
the continuity of pressure and normal displacement at rbI is omitted,
and 2I þ 1 remaining boundary conditions need to be re-written. We
start with the derivation of the displacement vector. The displacement
vectors in the elastic ice layer and water column are given by

uðrÞ ¼
1

x2qice
rUpðrÞ þ r � 0;WshðrÞ; 0½ �� �

; r 2 ice layer;

1
x2qwi

rUwiðrÞ; r 2 water:

8>>><
>>>:

(6)

In the elastic ice layer, the relation between the stress tensor and
the displacement in 2D is given by

sxx ¼ ðksh þ 2lÞ @ux
@x

þ ksh
@uz
@z

;

sxz ¼ l
@ux
@z

þ @uz
@x

� �
;

szz ¼ ðksh þ 2lÞ @uz
@z

þ ksh
@ux
@x

;

8>>>>>>>><
>>>>>>>>:

(7)

where

ux ¼ 1
x2qice

@Up

@x
� @Wsh

@z

� �
;

uz ¼ 1
x2qice

@Up

@z
þ @Wsh

@x

� �
8>>>><
>>>>:

(8)

while, in the water column, the displacement vector reduces to

ux ¼ 1
x2qw

@Uwi

@x
;

uz ¼ 1
x2qw

@Uwi

@z
:

8>>><
>>>: (9)

Next, we rewrite the normal displacement in the ice layer in
terms of ES amplitudes,

upðrÞ ¼
XN
n¼1

Gupðr; r0ðnÞÞs0ðnÞ þ
XN
n¼1

Gupðr; r2ðnÞÞs2ðnÞ;

ushðrÞ ¼
XN
n¼1

Gushðr; r1ðnÞÞs1ðnÞ þ
XN
n¼1

Gushðr; r3ðnÞÞs3ðnÞ;

8>>>>><
>>>>>:

(10)

where the subscript (n) specifies the nth ES of each set, sðnÞ is its ampli-
tude, N is the total ES number of each set, and up and ush denote the
normal components of the compressional and shear displacements,
respectively. Similarly, the stress tensor can be re-written as

spnor ðrÞ ¼
XN
n¼1

Gspnor ðr; r0ðnÞÞs0ðnÞ þ
XN
n¼1

Gspnor ðr; r2ðnÞÞs2ðnÞ;

sshnor ðrÞ ¼
XN
n¼1

Gsshnor ðr; r1ðnÞÞs1ðnÞ þ
XN
n¼1

Gsshnor ðr; r3ðnÞÞs3ðnÞ;

sp tan ðrÞ ¼
XN
n¼1

Gsp tan ðr; r0ðnÞÞs0ðnÞ þ
XN
n¼1

Gsp tan ðr; r2ðnÞÞs2ðnÞ;

ssh tan ðrÞ ¼
XN
n¼1

Gssh tan ðr; r1ðnÞÞs1ðnÞ þ
XN
n¼1

Gssh tan ðr; r3ðnÞÞs3ðnÞ;

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

(11)

where spnor and sshnor denote the normal components of the compres-
sional and shear stress tensors, respectively, and sp tan and ssh tan denote
the tangential components of the compressional and shear stress ten-
sors, respectively. According to Eq. (8), the normal-displacement
Green’s functions, Gupðr; r0Þ, and Gushðr; r0Þ, have the following math-
ematical expressions:

Gupðr; r0Þ ¼ 1
x2qice

n̂x
@

@x
þ n̂z

@

@z

� �
GUpðr; r0Þ;

Gushðr; r0Þ ¼ 1
x2qice

�n̂x
@

@z
þ n̂z

@

@x

� �
GWshðr; r0Þ;

8>>>><
>>>>:

(12)

while the normal and tangential components of the stress tensors,
Gspnor ðr; r0Þ; Gsshnor ðr; r0Þ; Gsp tan ðr; r0Þ, and Gssh tan ðr; r0Þ, are given by

Gspnor ðr; r0Þ ¼ 1
x2qice

n̂x
2A1 þ n̂z

2B1 þ 2n̂x n̂zC1

� �
;

Gsshnor ðr; r0Þ ¼ 1
x2qice

n̂x
2A2 þ n̂z

2B2 þ 2n̂x n̂zC2

� �
;

Gsp tan ðr; r0Þ ¼ 1
x2qice

ðn̂x 2 � n̂z
2ÞC1 þ n̂z n̂x ðB1 � A1Þ

� �
;

Gssh tan ðr; r0Þ ¼ 1
x2qice

ðn̂x 2 � n̂z
2ÞC2 þ n̂z n̂x ðB2 � A2Þ

� �
;

8>>>>>>>>>>>><
>>>>>>>>>>>>:

(13)

where
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A1 ¼ ðksh þ 2lÞ @2

@x2
þ ksh

@2

@z2

� �
GUpðr; r0Þ;

B1 ¼ ðksh þ 2lÞ @2

@z2
þ ksh

@2

@x2

� �
GUpðr; r0Þ;

C1 ¼ 2l
@2GUpðr; r0Þ

@x@z
;

A2 ¼ �ðksh þ 2lÞ @2

@x@z
þ ksh

@2

@z@x

� �
GWshðr; r0Þ;

B2 ¼ ðksh þ 2lÞ @2

@z@x
� ksh

@2

@x@z

� �
GWshðr; r0Þ;

C2 ¼ l � @2

@z2
þ @2

@x2

� �
GWshðr; r0Þ;

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

(14)

and n̂x and n̂z are the horizontal and vertical components of n̂.
On the other hand, the sound pressure and normal displacement in the water column can be written as

pwiðrÞ ¼
XN
n¼1

GUwi ðr; r2iþ2ðnÞÞs2iþ2ðnÞ þ
XN
n¼1

GUwi ðr; r2iþ3ðnÞÞs2iþ3ðnÞ; ð1 � i < I � 1Þ;

uwiðrÞ ¼
XN
n¼1

Guwi ðr; r2iþ2ðnÞÞs2iþ2ðnÞ þ
XN
n¼1

Guwi ðr; r2iþ3ðnÞÞs2iþ3ðnÞ; ð1 � i < I � 1Þ;

pwI�1ðrÞ ¼
XN
n¼1

GUwI�1 ðr; r2IðnÞÞs2IðnÞ; ði ¼ I � 1Þ;

uwI�1ðrÞ ¼
XN
n¼1

GuwI�1 ðr; r2IðnÞÞs2IðnÞ; ði ¼ I � 1Þ;

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

(15)

where uwi denotes the normal displacement in water with respect to
the corresponding boundary, and Guwi is the normal-displacement
Green’s function in water with a relation to GUwi of

Guwi ðr; r0Þ ¼ 1
x2qwi

n̂x
@

@x
þ n̂z

@

@z

� �
GUwi ðr; r0Þ; ð1 � i � I � 1Þ :

(16)

For each interface at rbi (i � I � 1), considering a vector of field
points rbið1Þ; rbið2Þ; …; rbiðNÞ and, after substituting for the bound-
ary conditions given in Eq. (2) in terms of the ES amplitudes given by
Eqs. (10), (11) and (15), this yields a linear system coupling all fields
generated by 2I þ 1 sets of ES,

G½ �fsg ¼ feg ; (17)

where fsg is the unknown amplitude vector given by

fsg ¼ fs0; s1; s2; s3; s4; s5;…; s2iþ2; s2iþ3; s2iþ4;

s2iþ5;…; s2I�2; s2I�1; s2IgT; (18)

and right-hand-side (RHS) vector feg is the incident field quantity
composed of

feg ¼ fe0; e1; e2; e3; e4; e5;…; e2iþ1; e2iþ2;…; e2I�1; e2IgT: (19)

In the above linear system, the global coefficient matrix G can be
written as

G
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0;1 G
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In the above equations, the entries of the N�N transfer matrices
are calculated using Eqs. (4), (5), (12), (13), and (16), and the subscript
i;l of each transfer matrix specifies the boundary field at rbi produced
by ES placed at rl , i.e.,

Gi;l ¼ Gðrbi ; rlÞ : (21)

For the source producing the incident field in the first water layer,
feg has the following explicit expression:
feg ¼ f0; 0; 0; pincðrb1Þ; uincðrb1Þ;�pincðrb2Þ;�uincðrb2Þ; 0;…; 0|fflfflffl{zfflfflffl}

ð2I�6Þ�0

gT
;

(22)

where pinc and uinc are the 1� N vectors of incident pressures and
normal displacements at the corresponding boundary, respectively.
For the source in the ith layer (i< I because the source is generally
deployed in water in most of situations), feg is given by

feg ¼ f0;…; 0|fflfflffl{zfflfflffl}
ð2i�1Þ�0

; pincðrbiÞ;uincðrbiÞ;�pincðrbiþ1Þ;

�uincðrbiþ1Þ; 0;…; 0|fflfflffl{zfflfflffl}
ð2I�2i�2Þ�0

gT: (23)

When a monopole point source of unit amplitude is considered,
the incident field quantities are determined by Green’s function multi-
plied by 4p. The water-seabed Green’s function or the free-field one is
used depending on which layer the source is in. If the source is placed
at the ith layer (i < I � 1), the free-field Green’s function is used to
evaluate pinc and uinc at the upper and lower interfaces of the layer.
This gives the RHS of Eq. (16) such that the boundary conditions
across each interface in the waveguide are rigorously enforced. When
the source is in the I – 1th layer, pinc and uinc should account for the
seabed reflection. This is because the global coupling matrix is
assembled using the water-seabed Green’s function that automatically
enforces the boundary conditions of a range-independent seabed. In
this case, pinc and uinc must be evaluated using the CIM described in
this article. After solving the linear system given by Eq. (17), the wave-
guide field in the ice and water can be calculated forwardly using Eqs.
(10), (11), and (15). See Fig. 2 for the flow chart of the algorithm in
ESM-SUBICE.

In addition, ESM-SUBICE can handle the range-dependent fluid
seabed similarly to dealing with the multiple water layer by arranging
two sets of ESs above and below the water-seabed interface. This is
based on the fact that: (a) Green’s functions are the basis functions of
the solution to the Helmholtz equation, and (b) the boundary condi-
tions across the interface between two fluid layers are strictly enforced
by imposing Eq. (2). By doing this, Green’s function of the ESs above
the I – 1th layer should be the free-field one but with the seabed wave-
number ks, such that the I – 1th layer can then be treated as an infinite
seabed without the lower boundary. When dealing with a range-
dependent elastic seabed, an additional set of ESs above the seabed
boundary is required to produce the shear wave in the seabed. The
corresponding procedure for assembling the global coupling matrix is
similar to that in the fluid seabed situation but with an additional
fluid–solid boundary condition imposed at the seabed interface. Since
the seabed elasticity is out of the scope of the present analysis, we only

explain how to address a range-dependent elastic seabed theoretically
without going into depth with it further.

B. Complex image method for evaluating the
water–seabed half space Green’s function

For the last set of ESs, Green’s function for a half-space with two
homogeneous layers is required. The method of complex images40 is
employed to calculate such a half-space Green’s function. The advan-
tage of the CIM is that the amplitudes and complex positions of
images only need to determine one time, and Green’s function for
arbitrary frequencies can be obtained with simple modifications on the
image configurations.41 In addition, CIM solutions converge fast using
only a few orders of images, which is numerically efficient.

Here, we consider a two-layer half-space shown in Fig. 3. The
water–seabed interface is allowed to be sloped with a slope angle h. A
new coordinate system (xh; zh) is introduced by rotating the original
coordinate (x, z) by h, where

xh ¼ x
cos h

þ ðz � x tan hÞ sin h;
zh ¼ ðz � x tan hÞ cos h

8<
: (24)

FIG. 2. Flowcharts summarizing the algorithm involved in ESM-SUBICE.
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with the water–seabed interface placed at z0 ¼ 0. The water–seabed
Green’s function for a field point rh ¼ ðxh; zhÞ due to a source at rh
¼ ðx0h; z0hÞ above the half-space can be represented as the wavenumber
integral expression, which is as follows:

Gðrh; r0hÞ ¼
j
4
Hð2Þ

0 ðkwI�1 jrh � r0hjÞ

þ 1
p

ð1
0
RðhÞ e

�jc1ðzhþz0hÞ

2jc1
cosðhjxh � x0hjÞdh; (25)

where h is the horizontal wavenumber, c1ðhÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk2wI�1

� h2Þ
q

is the
vertical wavenumber in water, and R(h) is the plane-wave reflection
coefficient of the water–seabed interface given by

RðhÞ ¼ qsCðhÞc1ðhÞ � qwI�1
csðhÞ

qsCðhÞc1ðhÞ þ qwI�1
csðhÞ

; (26)

where csðhÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðk2s � h2Þp

is the vertical wavenumber in the seabed,
and CðhÞ � 1 for a fluid seabed. For an elastic seabed, the detailed
expression of CðhÞ can be found in the existing literature17,40 and is
not given here to save space.

The integral in Eq. (25) represents the reflected field above the
upper half-space. We now write a line source field in terms of the
wavenumber integral expression, which is as follows:

j
4
Hð2Þ

0 ðkwI�1 jrh � r0hjÞ ¼
1
p

ð1
0

e�jc1ðzh�z0hÞ

2jc1
cosðhjxh � x0hjÞdh ; (27)

and assume a complex image depth z0hq ¼ �z0h þ jaq. The field gener-
ated by Q such line sources is as follows:XQ

q¼0

aq
j
4
Hð2Þ

0 ðkwI�1 jrh � r0hq jÞ

¼ 1
p

ð1
0

XQ
q¼0

aqe
c1aq

2
4

3
5 e�jc1ðzhþz0hÞ

2jc1
cos ðhjxh � x0hjÞdh: (28)

If the parameters aq and aq are determined byXQ
q¼0

aqe
c1ðhÞaq � RðhÞ ; (29)

the reflected field in Eq. (25), then, can be replaced by

Grðrh; r0hÞ ¼
XQ
q¼0

aq
j
4
Hð2Þ

0 ðkwI�1 jrh � r0hq jÞ; (30)

where r0hq is the position vector of the complex image and

jrh � r0hq j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxh � x0hÞ2 þ ðzh þ z0h � iaqÞ2

q
. The exponential fit can

be solved by a Levenberg–Marquard method based on Eq. (29). In
order to correct the singular behavior of the Green’s function, the
asymptotic term with the singularity in the R(h) should be removed
while performing the exponential fit. For a fluid sea bed, only one
asymptotic term R1 ¼ ðqs � qwI�1

Þ=ðqs þ qwI�1
Þ should be

subtracted.
Once the amplitudes and complex positions of images are deter-

mined, the half-space Green’s function can be calculated using Eq. (5),
with a0 ¼ R1 and a0 ¼ 0. Generally, five exponentials are sufficient
to fit the reflection coefficient of fluid seabed.40 Therefore, five expo-
nentials are used to calculate the half-space Green’s function in this
paper.

C. Fourier synthesis technique for generating
time-domain solutions

The time-domain solution is obtained by a Fourier synthesis
technique,42,43 in which the frequency-domain solutions over a broad-
band are first calculated and then transformed into the time domain
using the inverse fast Fourier transform,

Uðx; z; tÞ ¼
ðþ1

�1
SðxÞUðx; z;xÞe�jxtdx ; (31)

where SðxÞ is the source spectrum, and Uðx; z;xÞ is the frequency-
domain solution calculated by ESM-SUBICE. The above transform is
implemented numerically using ifft in MATLAB. Note that only the
frequency-domain solutions within the broadband of interest need to
be computed, outside which zero padding is required before perform-
ing ifft. In addition, a Tukey window is used as the weighting function
in the frequency domain, giving well-defined pule response in the time
domain. The frequency sampling interval is selected as Df ¼ cw=2L to
avoid aliasing,42,43 where L is the total propagation range.

III. NUMERICAL SIMULATIONS

This section presents the results of the numerical simulations.
First, sound propagation in an iso-velocity ocean with a rough ice layer
and a flat fluid seabed is considered. ESM-SUBICE is, then, bench-
marked against an FE model, and the significance of ice elasticity is dis-
cussed by comparing the TLs predicted by the elastic, fluid, and free-
surface ice representations in different ocean environments. Next, sound
propagation in more complex stratified ice-covered ocean environments
is considered to further examine the effect of the sound-speed profile
(SSP) and range dependency on the applicability of effective ice repre-
sentations. Wavenumber-spectrum analyses are presented to interpret
the effect of ice elasticity on propagation and scattering from the modal
perspective. Finally, pulse propagation is examined to visualize the effect
of scattering from the rough ice–water interface.

To implement ESM-SUBICE, each set of ESs is placed at a con-
formal line offset from the corresponding boundary by the same

FIG. 3. Schematic of the complex image method in a rotated coordinate system for
evaluating the water–seabed Green’s function.

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 35, 047126 (2023); doi: 10.1063/5.0144919 35, 047126-7

Published under an exclusive license by AIP Publishing

D
ow

nloaded from
 http://pubs.aip.org/aip/pof/article-pdf/doi/10.1063/5.0144919/17105942/047126_1_5.0144919.pdf

https://scitation.org/journal/phf


stand-off distance. The ESs are distributed along these conformal lines
with a distance D between two adjacent sources of k=6 (Refs. 37–39)
and a stand-off distance ds of 2D (where k represents the acoustic
wavelength).44 A detailed investigation into the selection of the ES
configuration in the current study suggested that it provides a reason-
able compromise; therefore, this was used in all of the subsequent
numerical experiments.

The FE model is implemented using the commercial COMSOL
Multiphysics software, with the acoustic–solid interaction model used
to couple the sound wave from the water into the solid ice. The FE
computational domain is truncated by perfectly matched layer (PML)
to absorb the out-going waves at z¼ �1 and at x¼61. Triangular
meshes with a maximum element size of k=6 are used to discretize the
computational domain. The fluid–solid coupling boundary is refined
automatically, giving a detailed description of the elastic wave field
within the ice. PML is composed of a mapping mesh of 20 layers with
a thickness of 50m in each simulation. Such a meshing scheme
guarantees a convergent FE solution.37–39,43 The FE frequency-domain
solver is used to calculate the wave field. The simulations reported
throughout this article were implemented using the MATLAB plat-
form (The MathWorks, Inc., Natick, MA) installed on a computer
with an Intel Core i9–13900K CPU and 128 GB RAM (Intel, Santa
Clara, CA).

A. 2D propagation in an ice-covered, iso-velocity ocean
waveguide

The first environment considered is an ice-covered, iso-velocity
ocean waveguide with a flat fluid seabed. The compressional- and
shear-wave speeds of the ice layer are 3500 and 1888m/s with the cor-
responding attenuation coefficients of 0.5 and 1.5 dB=k, respectively,
and the ice density is 900 kg/m3. The water is of 300-m depth, with a
sound speed of 1435m/s and a density of 1000 kg/m3. The range-
independent fluid seabed has a sound speed of 2000m/s with an
attenuation coefficient of 0.2 dB=k and a density of 2200 kg/m3. A
monopole point source of unit amplitude is considered, and this is
placed at (500, �20m). The computational domain extends from
x¼ 0 m to x¼ 10 km and from z¼ 0 m to z ¼ �300m. Note that the
FEM requires 100m deeper space to properly truncate the infinite
fluid seabed. The above simulation parameters are used unless other-
wise specified.

1. Benchmark example

The first benchmark example is sound propagation under an ice
layer with keels. The source frequency is 100Hz. Figure 4 illustrates
the sub-ice ocean environment; the right-hand panel shows a zoomed
area plotting the rough ice–water interface. Note that the acoustic
wavelength is 15m, which is comparable with the ice-keel size; there-
fore, considerable rough scattering is expected in this case. Excellent
agreement with the FE model can be seen in Fig. 5, where the TL is
plotted as a function of the range with a receiver depth of z¼ �200m,
thus validating that ESM-SUBICE accounts well for the scattering
effects of a rough ice–water interface.

2. Propagation of acoustic and elastic waves

Next, we consider wave propagation in the ice-covered ocean
waveguide described in Fig. 4. Figure 6(b) gives the sub-ice acoustic
propagation under the rough elastic ice layer. For comparison, the
results for 3-m-thick ice cover are also given in Fig. 6(a). Visible scat-
tering effects from the rough ice–water interface can be observed in

FIG. 4. Setup of the sub-ice ocean environment (a), and a zoomed-in view showing the details of the rough ice–water interface (b).

FIG. 5. Transmission loss (TL) as a function of range at 100 Hz, with a receiver
and source depth of �20 m. The solid green and dashed red lines correspond to
the FEM and ESM-SUBICE results, respectively.
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Fig. 6(b), and this is associated with greater TLs when compared with
Fig. 6(a). The ice keels scatter considerable energy in the direction
along which sound penetrates the seabed at supercritical grazing
angles. In addition, the roughness of the ice–water interface increases
the local grazing angle of the incident waves, promoting water–ice
energy transmission. Therefore, more energy is taken out of the system
by shear-wave attenuation from compressional-to-shear wave conver-
sion in the rough case. These two mechanisms causes greater TLs at
long ranges than in the flat-ice case.

To emphasize the effect of ice elasticity on scattering and propa-
gation, Figs. 6(c) and 6(d) show the results when the ice cover is
modeled as a fluid and a free surface, respectively. By comparing Figs.
6(b)–6(d), one can observe that the fluid and free-surface representa-
tions overpredict the acoustic energy at long ranges and fail to capture
the detailed modal interference pattern presented in Fig. 6(b). This dis-
crepancy is explained by acoustic-elastic coupling, which is not cap-
tured in either the fluid or free-surface representations. Furthermore,
the free-surface representation fails to capture the elastic waves within
the ice, which reflect at the air–ice interface and transmit back into the
water column at steep grazing angles with respect to the horizontal.
The associated energy is likely to be attenuated in the sediment by the
supercritical incidence. This scattering of ice-borne waves is absent in
the free-surface representation.

Figure 7 shows zoomed-in areas (above z ¼ �10m) of the com-
pressional wave propagation within the ice cover plotted in Fig. 6.
Here, we omit the result from the free-surface representation since
waves within the ice are not captured. For the elastic representation,
P-wave propagation exhibits observable reflection from the air–ice
interface, at which a physically accurate zero-traction boundary is
applied. P waves do not vanish near the air–ice interface, and

elastic-mode nulls are observed near the ice–water interface. However,
the fluid ice representation gives false fields within the ice, exhibiting
the impact of pressure release rather than the zero-traction boundary.
The field within the fluid ice is almost negligible compared with the
P-wave distribution in the elastic ice, indicating that the lack of
acoustic-elastic coupling in the fluid representation causes the overpre-
diction of acoustic energy in the ocean. Comparing Figs. 7(a) and 7(b), it
can be seen that more energy is transmitted into the rough ice cover
than the flat ice, and significant energy transmission occurs in thick ice
regions, which coincides with the above analysis.

Figure 8 displays shear-wave propagation within the ice in the
flat and rough elastic cases. The S waves exhibit a rather uniform
mode shape, with larger amplitudes than P waves due to the consistent
compressional-to-shear energy conversion occurring when the acous-
tic waves interact with the ice. Therefore, S waves are also strong where
considerable water–ice transmission occurs. As the propagation range
increases, leaky-elastic-wave behaviors are associated with decreasing
ice thickness, carrying the energy back into the water column with
steeper grazing angles toward the seabed. This also increases the TL, as
the re-radiated energy tends to leak into the seabed at supercritical
grazing angles. Leaky elastic waves may explain why the S-wave energy
is lower in the rough-ice case, even if its average thickness is greater.

To further consider under what conditions the fluid and free-
surface representations can provide acceptable predictions, we now
compare their depth-averaged TLs in various ocean environments.
We first consider different water depths, as shown in Figs. 9(a)–9(c).
As the water depth increases, discrepancies among different ice repre-
sentations become small, with their maxima exceeding 10 dB for a
depth of 50m and their minima within 5 dB when the depth is 300m.
Only low-order modes are supported in shallow water, propagating at
shallow grazing angles at long ranges. Due to scattering from elastic
ice keels, energy from low-order modes changes its propagation angle
from shallow to steep, tending to be transferred to higher-order modes
and the plate flexural modes of the ice layer. Since higher-order modes

FIG. 6. Sub-ice acoustic-wave propagation (compressional potential) from 0 to
10 km at 100 Hz. The results are given for: (a) 3-m-thick elastic ice, (b) rough elas-
tic ice, (c) fluid ice, and (d) free-surface ice.

FIG. 7. Compressional wave propagation from z¼ 0 to �10 m and from x¼ 0 to
10 km at 100 Hz for: (a) 3-m-thick elastic ice, (b) rough elastic ice, and (c) fluid ice.
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are cut off in shallow oceans, and the plate flexural modes mainly con-
tribute to the field within the ice, low-order modes gradually become
evanescent due to scattering. However, higher-order modes propa-
gating at steep angles are present in deeper oceans, coupling with
re-radiation from within the elastic ice layer with steep angles relative
to the horizontal. This coupling effect associated with the scattering of

ice-borne waves prevents bottom losses. It is, therefore, reasonable to
infer that the fluid and free-surface representations may be acceptable
for deep-water environments.

Figures 9(d)–9(f) show the depth-averaged TLs for different ice
representations in a 300-m-deep ocean overlying three types of seabed.
Significant discrepancies are associated with hard seabeds, which sup-
port propagation of higher modes at steep grazing angles relative to
the horizontal. This means that those modes also interact with the
elastic ice at large grazing angles. Therefore, the harder the seabed, the
more energy is transmitted into the ice and then attenuated through
compressional-to-shear conversion. We, thus, infer that the fluid and
free-surface representations may be acceptable for ocean overlying a
soft seabed.

B. 2D propagation in a stratified ice-covered ocean
waveguide

We now test ESM-SUBICE for wave propagation in stratified
ice-covered ocean waveguides close to realistic and complex Arctic
Ocean acoustic environments. We first consider 1200-m-deep water
overlying a flat seabed with a depth-dependent sound-speed structure.
As shown in Fig. 10(a), the water column is divided into five layers to
accommodate sound-speed inhomogeneities, with the top four layers
forming a thermocline. The thicknesses of these layers are 25, 25, 50,
and 50m, respectively. The bottom water layer represents the isother-
mal layer, in which the sound speed barely varies with depth. The
sound speeds in these water layers are 1435, 1440, 1445, 1453, and
1460m/s from the top to bottom. We choose a soft fluid seabed with a
sound speed of 1500m/s, an attenuation coefficient of 0.2 dB, and a
density of 1500 kg/m3, avoiding ice–water scattering and the impact of

FIG. 9. Depth-averaged TLs for the elas-
tic (solid red lines), fluid (dashed blue
lines), and free-surface (dash-dotted pur-
ple lines) ice representations in various
ocean environments. The left-hand panels
show the results in ice-covered oceans
with water depths of: (a) 50m, (b) 150 m,
and (c) 300m. The right-hand panels
show the results in ice-covered, 300-m-
deep oceans overlying (d) basalt, (e) lime-
stone, and (f) clay seabeds.

FIG. 8. Shear-wave propagation from z¼ 0 to �10 and from x¼ 0 to 10 km at
100 Hz for: (a) 3-m-thick elastic ice and (b) rough elastic ice.
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up-refraction being overshadowed by seabed reflection. A source with
a frequency of 100Hz is placed at (500, �20m). The same ice material
is assumed here as previously described. The computational domain
extends from x¼ 0 m to x¼ 10 km and from z¼ 0 m to z¼ �1200m.

1. Stratified ice-covered ocean waveguide with a flat
fluid seabed

A benchmark is first established for ESM-SUBICE through TL
comparisons with the FEM at �200m depth, and the corresponding
results are shown in Fig. 10(b). Excellent agreement with the FEM
(right-hand panel) validates ESM-SUBICE. Figure 10(c), then, displays
the acoustic-wave propagation in the region from z¼ 0 to �1200m
and from x¼ 0 to 10 km. One can observe the apparent up-refraction

caused by the positive sound-speed gradient, bending the acoustic ray
reflected by the ice layer back and consequently creating a surface duct
above z ¼ �150m. This surface duct intensifies the interaction of the
acoustic wave with the elastic ice layer, increasing the grazing angle
with respect to the local ice–water interface. Therefore, enhanced
water–ice energy transmission is expected from up-refraction.

Although the analysis in Sec. IIIA 2 suggests that the effective ice
representations may be sufficient for a deep-water environment with a
soft seabed, the surface duct created by up-refraction can still induce
waveguide effects, potentially invalidating these representations by
intensifying interactions with the elastic ice. Figure 11 displays TLs for
different ice representations with and without the up-refractive SSP at
a receiver depth of �20m. In the presence of the SSP, there is a pro-
nounced waveguide impact with rapid peak–trough shifts with range.

FIG. 10. (a) Setup of the 1200-m-deep,
sub-ice ocean environment. (b) The TL as
a function of range at 100 Hz with a
receiver depth of �200m and a source
depth of �20m. The solid green and
dashed red lines correspond to the FEM
and ESM-SUBICE results, respectively.
(c) Sub-ice acoustic-wave propagation in
1200-m-deep, up-refractive water covered
by rough ice (as in Fig. 4).

FIG. 11. TL as a function of range at 100 Hz with a receiver and source depth of �20m. The solid red, dashed blue, and dash-dotted black lines correspond to the results for
the elastic, fluid, and free-surface representations, respectively. The left and right panels give the results with and without the up-refractive SSP, respectively.
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The fluid representation produces a similar interference pattern to the
elastic representation, which is dominated by rough scattering.
However, compared with the elastic representation, the specific peak
and trough positions shift, and the TL is around 5dB lower. This is
explained by the enhanced acoustic-wave interactions with the elastic
ice due to surface ducting. The free-surface ice representation predicts
the correct level but fails to capture the detailed interference pattern.
Conversely, TLs for the elastic and fluid representations are almost
identical in the iso-velocity deep water. This is because steep reflections
from within the elastic ice couple into higher-order modes and propa-
gate in deep water (see Sec. IIIA 2). These results indicate that once
the water is strongly up-refractive, the effective ice representations are
insufficient, and elasticity should be considered in any sub-ice propa-
gation model to predict accurate TLs.

2. Stratified ice-covered ocean waveguide with a fluid
Gaussian seamount

We now consider the same up-refractive deep water overlying a
fluid Gaussian seamount. The seabed topography is determined by
zbðxÞ ¼ h0 � h1eð�ðx�5000Þ2=d2Þ, where h0 ¼ �1200 m, h1 ¼ �1000
m, and d ¼ 1600. Other simulation parameters remain the same as
previously. Again, ESM-SUBICE is validated by a comparison of TL
with FEM [Fig. 12(b)]. Figure 12(c) gives the corresponding acoustic-
wave propagation, in which the modal cutoff associated with the up-
slope propagation can be seen. The modal cutoff induces greater TLs
from x¼ 6 to 10 km. However, the surface duct preserves most of the
propagation energy by trapping the sound waves within it and thus
reducing interactions with the seabed. Interestingly, observable ice-
layer scattering patterns (caustics) can be found from 6 to 10 km, over
which the seamount shadows the sound. This pattern is absent in the

same region in Fig. 10(c), as the seabed reflection overshadows the ice-
layer scattering.

Next, we compare TLs for different ice representations in the
Gaussian-seamount case. Figure 13 shows the discrepancies between
the elastic and fluid representations, which are slightly larger than
those for the flat-seabed case. This is because high-order modes couple
with the steep reflections from within the elastic ice. This part of the
energy transmits into the sediment and finally decays due to the modal
cutoff associated with decreasing water depth. The fluid representation
fails to capture the coupling of the high-order modes with the steep re-

FIG. 12. (a) Setup of the ice-covered sea-
mount. (b) TL as a function of the range at
100 Hz with a receiver depth of �50 m
and a source depth of �20m. The solid
green and dashed red lines correspond to
the FEM and ESM-SUBICE results,
respectively. (c) Sub-ice acoustic-wave
propagation in 1200-m-deep up-refractive
water overlying a Gaussian seamount.

FIG. 13. TL as a function of range at 100 Hz in the Gaussian-seamount case, with
a receiver and source depth of �20 m. The solid red, dashed blue, and dash-
dotted black lines correspond to the results for the elastic, fluid, and free-surface
representations, respectively.
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radiation from the elastic ice and so further overpredicts the acoustic
energy at long ranges. This suggests that the coupling is complicated
when strong seabed-range dependency is involved, requiring the ice to
be treated as an elastic medium.

C. Modal interpretation of the effect of ice elasticity
on propagation and scattering

We now interpret the effect of ice elasticity on propagation and
scattering from the modal perspective. To do so, the wavenumber-
domain spectra are calculated by performing the inverse Fourier
transform to the 2D sound pressure output from ESM-SUBICE and
normalized by the maximum spectrum amplitude. Waveguide modes
are, then, identified by comparing the result with the modal phase
velocity computed by a scaled boundary finite element method
(SBFEM).45 Here, we consider the same environment used in the pre-
vious example in Sec. IIIA 1 but with a water depth of 50m. The
thickness of the ice layer is chosen as 10m based on the maximum
size of the ice keel shown in Fig. 4. The following analysis also supports
the initial discussion on the applicability of effective ice representations
in Secs. IIIA and III B. In this case, the source is placed 1m close to
the ice layer such that the elastic mode in the ice layer can be excited,
with a source frequency of 100Hz. Figure 14(b) displays the dispersion
curves for the 50m-deep waveguide, which is calculated by SBFEM.
The phase velocities of the first seven modes at 100Hz are annotated
by the dashed blue lines, with their values detailed in Table I.

We now identify the waveguide modes in wavenumber spectra
by matching their phase velocities computed by SBFEM. Figure 15
shows the wavenumber spectrum in the horizontal wavenumber (kx)-
depth domain. Medium wavenumbers kp, kw, and ks are shown in

dashed vertical lines on this figure to divide the wavenumber spectrum
into three regions: a) continuous spectrum (kx < ks) where waves leak
to the seafloor and ice layer, b) the discrete spectrum (ks < kx < kw)
that contains poles corresponding to propagating modes in the water
column, and c) the evanescent spectrum, which represents wave com-
ponents exponentially decaying in the vertical in both water and sea-
bed. When the elastic ice layer is considered, interface waves pertain to
the evanescent spectrum, inducing additional poles corresponding to
the plate flexural modes of the ice layer. Figure 15 exhibits visible
modal-like patterns, indicating that modes 1–4 are propagating modes,
while modes 5 and 6 are leaky. The plate flexural modes of the ice layer
(mode 0) are represented by the interface-wave mode pattern to the
right of kw, exhibiting its evanescent character in water. All these fea-
tures agree well with the phase velocities given by SBFEM (Table I),
thus confirming that the ESM-SUBICE correctly describes the behav-
ior of each waveguide mode.

After identifying waveguide modes in wavenumber spectra, we
further discuss the effect of ice elasticity on propagation and scattering
based on the wavenumber-spectrum analysis, which directly gives
insights into the underlying waveguide physics. Figure 15 shows the
wavenumber spectra for different waveguide parameters. By compar-
ing Figs. 15 and 16(a), one can observe that, as the ice thickness
reduces from 10 to 3m, mode 5 changes from propagating to leaky,
and singularities corresponding to modes 1 and 2 become weak. More
importantly, the case of the 3m-thick ice layer barely shows the poles
corresponding to the plate flexural modes. This means that, as the ice
thickness increases with range, the low-order modal coupling between
acoustic and elastic waves may occur, potentially exciting the plate
flexural modes of the ice layer that further induce the shear-wave
attenuation and the supercritical incidence of the ice-borne scattering
to the bottom (the coupling between the leaky elastic modes and the
high-order modes, as discussed in Secs. IIIA 2 and B 2). Only low-
order elastic modes can be excited since the ice is thin compared with
water depth. Such acoustic-elastic coupling effects result in the TL dis-
crepancies in Fig. 9(a).

Figure 16(b) shows the wavenumber spectrum for a 300m deep
waveguide covered by a 10m-thick ice layer. Compared with Fig. 15,
Fig. 16(b) exhibits more high-order modes propagating at large graz-
ing angles relative to the seafloor, meaning that the waveguide behav-
ior in deep water is dominated by the high-order mode rather than the

FIG. 14. Dispersion curves calculated by SBFEM for the 50m-deep waveguide covered
by a 10m-thick ice layer. Other parameters are the same as those in Sec. III A 1.

TABLE I. Phase velocity of the first six modes labeled in Fig. 14(b) at 100 Hz.

Mode 0 Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

Phase
velocity (m/s)

1225.3 1458.4 1514.4 1611.7 1742.1 2028.1

FIG. 15. Wavenumber-domain spectra calculated using the sound pressure output
from ESM-SUBICE for the 50 m-deep waveguide covered by a 10m-thick ice layer.
Other parameters are the same as those in Sec. III A 1.
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acoustic-elastic coupling between the propagating and elastic modes.
This explains why the effective ice representation is valid for deep-
water environments. The wavenumber spectra for different types of
seafloors are not given here to save space, the features of which can be
inferred very easily based on the above analyses. Soft seabed only sup-
ports a few low-order modes to propagate in the waveguide, and such
a waveguide can be approximated as a leaky half space. Therefore, the
acoustic-elastic coupling is relatively weak in the ice-covered ocean
with a soft seabed. This explains why the effective ice representation is
valid for soft seabeds.

Figures 16(c) and 16(d), then, show the wavenumber-domain
spectra for the up-refractive and iso-velocity deep-water environments
considered in Sec. III B 1, respectively, but with a 10m-thick ice layer.
These spectra are almost identical, where leaky modes are dominant
due to the deep water. Two visible differences between these spectra
are: a) distributions of leaky modes to the left of kp and b) surface duct
modes supported by the up-refractive sound speed profile [shown in
the magnified figure in Fig. 16(c)]. The surface duct modes contribute
to the surface channel, within which sound waves are trapped. They
intensify the acoustic–elastic interaction, potentially causing the cou-
pling between the propagating and elastic modes, as explained in Sec.
III B 1. Therefore, the effective ice representation is valid when the sur-
face duct modes are leaky.

D. Pulse propagation in the time domain

Pulse propagation is now considered to qualitatively study scat-
tering from the rough ice–water interface in the time domain. The
pulse bandwidth is 60Hz centered at 75Hz, and the acoustic environ-
ment is the same as that for Sec. IIIA. Figure 17 (Multimedia view)

shows the time evolution of pulse propagation. At the beginning
(t¼ 0.13 s), a clear front of head waves can be observed, forming a line
segment starting from a P wave in the ice layer interacting tangentially
with the surface-reflected wavefront. The P wave travels ahead of the S
wave at a faster speed, which is almost three times the water sound
speed. At t¼ 1.8 s, more pronounced reflected patterns are observable
along with visible reverberations due to the rough ice layer. At t¼ 3.5 s,
the number of reflections increases, and scattering effects are apparent.
At t¼ 6.3 s, several visible “tails” following each path indicate scattering
from the rough air–ice interface. For comparison, Fig. 18 (Multimedia
view) also gives the corresponding results with flat ice, in which several
pieces of evidence supporting rough scattering are absent.

To illustrate the scattering effect in more detail, Fig. 19 shows
stacked time series vs range at z ¼ �50m in the rough and flat cases.
For flat ice, separated wave packets tend to be observed with increasing
range; these correspond to different propagation modes (dispersion
behavior), which travel at different group velocities (higher modes
travel at lower speeds). Therefore, the received signals exhibit more
distinct wave packets at longer than shorter ranges. Note that between
two distinct wave packets, the received signal is almost zero in the
absence of rough scattering from ice keels. Conversely, significant dis-
tortions in wave packets are seen in Fig. 19(a) at short ranges
(1.5–5.5 km) due to scattering. Moreover, the time signal exhibits
apparent reverberations at greater distances, spreading over the dis-
tinct wave packets observed in the flat ice case.

E. Discussion on numerical efficiency

We now discuss the numerical efficiency of ESM-SUBICE in
comparison with direct Multiphysics FEM. First, the numerical cost of

FIG. 16. Wavenumber-domain spectra calculated using the sound pressure output from ESM-SUBICE for (a) the 50m-deep waveguide covered by a 3 m-thick ice layer and
(b) the 300 m-deep waveguide covered by a 10 m-thick ice layer. Other parameters are the same as those in Sec. III A 1. (c) and (d) The wavenumber-domain spectra for the
up-refractive and iso-velocity deep-water environments simulated in Sec. III B 1, respectively, but with a 10m thick ice layer. (a) H ¼ 50 m, 3 m thick ice, (b) H ¼ 300 m, 10 m
thick ice, (c) H ¼ 1200 m, 10 m thick ice, up-refractive, and (d) H ¼ 1200 m, 10 m thick ice, iso-velocity.
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the proposed method depends on the unknown number (UN) regarding
all ESs involved in reproducing the wave field. In our implementations,
NUN is determined by a one-sixth acoustic wavelength rule to discretize
the waveguide boundary. Given the UN regarding each set of ES in
ESM-SUBICE, the corresponding numeral cost is O½ð2I þ 1ÞNUN2�3 �,
in which the evaluation of the dense coefficient matrix involving the
complex image method costs OðQNUNÞ operations, where Q is the
order of the image source. Generally, Q¼ 5 provides acceptable accu-
racy for most fluid seabeds, according to previous numerical tests.37,40

The FEM couples the solid mechanics and pressure acoustics,
requiring discretization of the whole space, including the perfectly
matched layers to absorb out-going waves at each end of the

waveguide and the lower half-space of the seabed. The FEM discretiza-
tion scheme uses the same one-sixth rule as for ESM-SUBICE in the
fluid domain.42,43 Given the degrees of freedom (DOF) of FEM, the
corresponding numerical cost is OðNDOF2�3Þ. On the basis of the BI
and volume discretization for treating the same problem, it is antici-
pated that NDOF will be significantly larger than NUN.

Table II lists the numerical costs and average computation times
required by ESM-SUBICE and FEM in each simulation. As expected,
NDOFm is 7–8 orders of magnitude greater than NUN. Therefore, FEM
is more numerically expensive than ESM-SUBICE, taking more than
twice the computation time. This analysis demonstrates the high effi-
ciency of ESM-SUBICE when compared with full-wave FEM.

FIG. 18. Time evolution of a pulse in an iso-velocity waveguide with flat ice cover at (a) 0.13 s, (b) 1.8 s, (c) 3.5 s, and (d) 6.3 s. Multimedia view: https://doi.org/10.1063/
5.0144919.2

FIG. 17. Time evolution of a pulse in the iso-velocity waveguide with a rough ice layer shown in Fig. 4 at (a) 0.13 s, (b) 1.8 s, (c) 3.5 s, and (d) 6.3 s. Multimedia view: https://
doi.org/10.1063/5.0144919.1
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IV. CONCLUSIONS

This article has presented an ESM-based model, ESM-SUBICE,
for predicting elastic- and acoustic-wave propagation in ice-covered
ocean acoustic environments. ESM-SUBICE solves the exact govern-
ing equations for acoustic–elastic propagation by expressing the wave
solution in terms of field superposition produced by several sets of
ESs. In the elastic ice, four sets of ESs are used to reproduce the scalar
and shear potentials. The ocean is divided into layers, each of which
requires two sets of ESs. All sets of ESs are then coupled by enforcing
the strict air–ice and ice–water boundary conditions and continuity
conditions across each interface between two adjacent water layers. By
further using the water–seabed half-space Green’s function, the com-
putational complexity regarding the water–seabed interface is reduced.
The nature of field decomposition inherited in ESM-SUBICE allows
one to study the compressional- and shear-wave fields individually,
providing insights into waveguide physics.

Simulations demonstrated ESM-SUBICE’s validity and capability
for predicting wave propagation in complex ice-covered ocean

acoustic environments. Benchmarking against FEM validated ESM-
SUBICE, confirming that it provides high-quality solutions. ESM-
SUBICE was further implemented to simulate wave propagation in
an ice-covered, up-refractive deep ocean with and without a
Gaussian seamount. The enhanced surface-duct scattering and the
modal cutoff associated with up-slope propagation indicate that the
results are reasonable. Due to the high numerical efficiency of ESM-
SUBICE, pulse propagation was used to qualitatively investigate the
scattering mechanism in an iso-velocity ocean covered by an ice
layer with keels.

The applicability of effective ice representations was examined,
and the results suggest that the fluid representation is adequate for
deep-water environments where the seabed is soft and the surface duct
effect is insignificant. This article has demonstrated the potential of
ESM-SUBICE to be a useful tool in sub-ice acoustic communication,
localization, and detection. Future work will focus on extending ESM-
SUBICE to handle fully 3D scenarios.

The original contribution of this work is given in the following:

• A meshless, wave-based sound propagation model in ice-covered
ocean environments is described using the equivalent-source
method, which can fast solve the full-wave field, including the
shear potentials in the ice. The model fully accounts for the
effects of ice elasticity on the sub-ice sound propagation. It is
highly suitable for a multi-layer sub-ice ocean environment com-
pared with a classical coupled normal mode code commonly
used for handling a three-layer waveguide. Also, its nature of
meshless and boundary-integral makes it more applicable to
Monte Carlo simulations or parameter sweeps compared with
models based on volume discretization.

TABLE II. Analysis of the numerical cost and average computation time required by
ESM-SUBICE and FEM.

300-m-deep waveguide 1200-m-deep waveguide

FEM ESM-SUBICE FEM ESM-SUBICE

NUN=NDOF 4 158 682 20 910 13 022 662 54 366
O Oð1019Þ Oð1012Þ Oð1021Þ Oð1014Þ
t 4 min 40 s 1 min 45 s 11 min 6 min

FIG. 19. Time signal vs range at a depth of z ¼ �50 m in the (a) rough and (b) flat ice cases. The time axis is reduced time, and all traces are multiplied by
ffiffiffi
x

p
to compen-

sate for geometric spreading.
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• The effect of ice elasticity on propagation and scattering is funda-
mentally discussed and interpreted by a wavenumber-spectrum
analysis, in which each waveguide mode is identified by tracking
its phase velocity computed by SBFEM. This gives insights into
the underlying waveguide physics from the modal perspective. A
significant feature of ice is revealed: Ice elasticity may not be the
dominant loss mechanism for sub-ice sound propagation when
the high-order propagating modes are supported and the
surface-duct modes are leaky. This may be useful for the equiva-
lent ice representation required for a fluid sound propagation
model, especially for 3D modeling.
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APPENDIX: DERIVATION OF THE POTENTIAL BASED
GOVERNING EQUATION

The homogeneous displacement equation of motion in a
homogeneous and isotropic elastic medium is given by17

ðksh þ lÞrðr � uÞ þ lr2u ¼ q€u; (A1)

where q is the medium density,€denotes @2

@t2, and the displacement
field u has the vector form of

u ¼ 1
x2q

rUp þr� ~Wsh

h i
; (A2)

where Up and ~Wsh are the scalar and vector potentials, respectively.
By substituting Eq. (A2) back in Eq. (A1), the left-hand side (LHS)
of Eq. (A1) can be written as follows

LHS ¼ ðksh þ lÞrðr � ðrUp þr� ~WshÞÞ
þ lr2ðrUp þr� ~WshÞ

¼ rðksh þ lÞ r � ðrUp þr� ~WshÞ
h i

þ lrðr2UpÞ þ lr2ðr � ~WshÞ
¼ rðksh þ lÞðr � rUpÞ þ rlðr2UpÞ

þ l rðr � ðr � ~WshÞÞ � r �r� ðr � ~WshÞ
h i

¼ rðksh þ 2lÞðr2UpÞ � lr�r� ðr � ~WshÞ: (A3)

The above derivation uses the relation r � ðr � ~WshÞ ¼ 0 and
r� ðr � ~WshÞ ¼ rðr � ~WshÞ � r2~Wsh. Similarly, the right-hand
side (RHS) of Eq. (A1) is rewritten as

RHS ¼ qr€Up þ qr� €~W sh: (A4)

A set of wave equations of the scalar and vector potentials can
be obtained by substituting Eqs. (A3) and (A4) back in Eq. (A1),
and after some rearranging, this yields

ksh þ 2l
q

r2Up ¼ €Up

�l
q
r� ðr � ~WshÞ ¼ €~W sh:

8>>><
>>>: (A5)

When considering the 2D case, ~Wsh ¼ ½0;Wsh; 0�. The 2D
Helmholtz equations of the scalar and vector potentials, then, can
be derived by the use of the frequency–time Fourier transform pair,
and this yields

r2 þ k2p
h i

Up ¼ 0

r2 þ k2sh
� �

WshÞ ¼ 0:

8<
: (A6)

Equation (A6) gives the same governing equations as in Eq.
(1). Note that the above derivation and the boundary conditions
defined in Eq. (2) indicate that the potential-based governing equa-
tions used in this article are the exact wave equation governing the
acoustic–elastic propagation in an ice-covered waveguide.
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