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• A semi-analytical solution for sound propagation from a directional source moving in shallow water is presented.
• The presented semi-analytical solution is valid for any range independent environment with an arbitrary sound-

speed profile.
• A novel normal-mode model is developed, which comprehensively accounts for the Doppler-induced impact.
• The Doppler beam shift is found and investigated using the proposed theory.
• The observed angular offset of modal plane waves can be attributed to the Doppler beam shift.



Semi-analytical solution for sound propagation from a moving directional source in a shallow-water waveguide

Tengjiao Hea,1, Xinyu Liub, Ruixin Niea,1, Wei Guoc, Shiqi Mod and Bin Wanga,∗,1

aKey Laboratory of Marine Intelligent Equipment and System, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, P. R.
China
bChina Ship Scientific Research Center, Wuxi, 214000, P. R. China
cCollege of Meteorology and Oceanography, National University of Defense Technology, Changsha, 410073, P. R. China
dCollege of Underwater Acoustic Engineering, Harbin Engineering University, Harbin, 150001, P. R. China

A R T I C L E I N F O
Keywords:
moving directional sources
semi-analytical method
Doppler-shifted field
normal-mode model
Doppler beam shift

A B S T R A C T
Understanding the waveguide fields produced by moving directional sources is of crucial
importance in underwater acoustic detection. In practice, moving underwater targets often exhibit
directionality, especially at high frequencies. Herein, we present a semi-analytical method to
calculate the Doppler-shifted field (DSF) from a directional source moving horizontally in a
range-independent, shallow-water waveguide. We develop a novel normal-mode model using a
modal-projection approach with a perfectly matched layer. This comprehensively accounts for
changes in modal shape, eigenvalue shifts, and the branch-integral contribution. We derive an
analytical expression for the DSF based on Huygens’ principle, and the solution is presented
as a sum over propagating eigenmodes, with the modal excitation determined by the source
directivity depending upon the grazing angle of each pair of modal plane waves. This rigorous
expression is valid for any type of radiator moving in a range-independent environment with an
arbitrary sound-speed profile. We then present a theoretical analysis of the Doppler beam shift
produced by a piston-like radiator. This reveals that the observed angular offset of modal plane
waves can be attributed to the Doppler beam shift and confirms that this is a new mechanism
causing considerable differences between the fields generated by a directional moving source
and by the same source at rest. This has potential value in various applications, particularly for
underwater acoustic detection of moving targets.

1. Introduction
Driven by acoustic fault diagnosis (Shen et al., 2016) and sound-source localization and identification (Zhang

et al., 2016), there has been considerable interest in the characteristics of the sound fields created by moving sources
such as land vehicles, trains (Barsikow and King, 1988), and aircraft (Stoker et al., 2003). Doppler effects, which
are induced by the relative motion between a source and a receiver, have been investigated thoroughly in an infinite
homogeneous medium (Lowson, 1965; Pierce and Beyer, 1990; Makarewicz, 1992) and also in relation to underwater
acoustics, because this is vital for assessing sonar performance and inversion of ocean-environment parameters (Jensen
et al., 2011). Doppler phenomena in underwater environments, in which reflection, refraction, and scattering occur(He
et al., 2021, 2023b), are complicated. Flanagan et al. (1974) and Clark et al. (1976) carried out pioneering work in deep
ocean channels, initially investigating Doppler-spreading effects by analyzing the multi-path signal emitted by a distant
moving source. Furthermore, in the deep ocean environment, Dzieciuch and Munk (1994) classified ray arrivals using
experimentally observed differential Doppler shifts.

In recent years, there has been an increasing focus on shallow-water Doppler phenomena. Numerous well-
established theories, such as ray tracing (Guthrie et al., 1974), normal modes (NMs) (Neubert, 1977; Hawker, 1979;
Buckingham and Giddens, 2006), and wavenumber integration (Schmidt and Kuperman, 1994) have been employed
for investigating these phenomena. Helped by their analytical form being connected to waveguide physics, NMs
have been used widely to shed light on waveguide Doppler behavior. Obrezanova and Rabinovich (1998) derived
asymptotic formulas for the Doppler-shifted field (DSF) generated by a moving source in a two-layer waveguide,
giving a clear physical interpretation of Doppler effects in terms of retarded times. Rabinovich and Hernández Juárez
(2016) developed a spectral-parameter power-series method that provides a numerically efficient solution for the

∗Corresponding author
bin_wang@sjtu.edu.cn (B. Wang)

ORCID(s):
1Also at: Department of Naval Architecture and Ocean Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China

Tengjiao He: Preprint submitted to Elsevier Page 1 of 22



Sound propagation from a moving directional source in shallow water

high-frequency underwater DSF due to a moving source submerged in the ocean. Additionally, the DSFs produced
by aerial targets have attracted significant interest; this is because detecting aircraft-generated noise with submerged
hydrophones enables estimation of the sound speed in water and sediment, as well as providing means to obtain the
motion parameters of airborne sources (Buckingham et al., 2002; Amiri-Simkooei et al., 2008; Lo and Ferguson, 2013;
Bevans and Buckingham, 2017; Haijie et al., 2019). Buckingham and Giddens (2006) developed a theoretical model
of the DSF generated by an aircraft in an air–ocean–sediment waveguide; based on NMs, they derived an analytical
solution for the three-layer DSF, using an NM-based model to study shallow-water Doppler effects and using ray theory
to interpret the mechanism of Doppler spreading in a straightforward manner. Nevertheless, conventional NM-based
approaches have drawbacks, as they often ignore changes in modal shapes and the contribution of the branch integral,
leading to inaccurate description of the Doppler-induced modal cut-off.

Acoustic radiation emitted from underwater sources is typically directional. Incorporating the directional charac-
teristics of a source into simulations of waveguide DSFs has received significant interest because source directivity is
a crucial consideration for various applications, including underwater acoustic detection. However, integrating source
directivity into waveguide-field simulations has been a longstanding challenge.

Monopole point sources and multipoles are the two types of basis function that are used to represent source
directivity. The former relies on Huygens’ principle, expressing the directional radiation as a field superposition from
an array of monopole point sources. The amplitudes and phases of these point sources are determined by matching
the radiated field or the normal particle velocities distributed over the surface of the source. This method is typically
used to predict sound propagation from vibrating elastic structures in shallow water(He et al., 2023a; Fu et al., 2020;
Petris et al., 2022; Jiang et al., 2020). In contrast, multipole representations employ spherical harmonic functions to
expand the source directivity, allowing the waveguide field resulting from a directional source to be considered as
a superposition of a complete and orthogonal basis set. An example in this context is an outdoor sound-propagation
model that incorporates parabolic-equation algorithms with spherical harmonic expansion Vecherin et al. (2011, 2012).
In room acoustics, a recent paper also reported using a similar approach to predict the reverberation field produced by
a directional radiator within a cavity(Zhong et al., 2023). While both numerical approaches are able to incorporate
source directivity when simulating the waveguide field, they can also have a considerable computational cost for high-
frequency problems in which strong source directivity is expected, as these may involve a large number of point sources
or high-order basis functions. Moreover, these numerical approaches do not provide direct insights into the underlying
waveguide physics.

In light of the above discussion, the objectives of this work are twofold: first, to develop an improved NM model
capable of handling changing modal shapes, eigenvalue Doppler shifts, and the contribution of the branch-cut integral;
and second, to derive an analytical, NM-based expression for the DSF resulting from a directional source moving
in shallow water. This article presents a novel semi-analytical method for calculating the DSF resulting from a
directional source in shallow water with an arbitrary sound-speed profile (SSP). The proposed method offers faster
solutions than fully numerical techniques while also providing more precise descriptions of Doppler-induced effects
than standard NM-based approaches. Furthermore, this method contributes to a deeper understanding of the waveguide
physics involved. Notably, no semi-analytical solutions have been developed for this specific problem, highlighting the
originality of this article’s contribution.

To analyze the field generated by a moving source, we transform it into the field generated by the same source at rest
in a homogeneous moving medium (Ostashev and Wilson, 2015). The ocean environment is represented as a classic
shallow-water waveguide underneath a free surface. To accurately describe the Doppler-affected waveguide physics, we
use a modal-projection method with a perfectly matched layer (PML) (He et al., 2021) to yield and close the associated
generalized matrix eigenproblem, which can be easily solved using matrix eigenvalue decomposition. This approach
enables solving of the exact wave equation for sound propagation in an open waveguide with uniform flow, in which
the branch-cut integral is replaced by a sum over high-order modes. After this, we derive an analytical, normal-mode
expression for the DSF due to a directional source moving in a two-layer waveguide. Based on Huygens’ principle, the
DSF due to the moving directional source is replaced with a field superposition from an array of point sources placed
over the surface of the source. Instead of evaluating the integral of this field superposition numerically, we derive
an analytical expression for the integral by introducing the Fraunhofer far-field approximation and a Taylor-series
expansion to the integral kernel. This derivation eventually yields the modal expression for the DSF as a summation
over propagating eigenmodes, with their modal excitations determined by the source directivity depending on the
grazing angle of each pair of modal plane waves. The derived modal expression is rigorous, and it is thus valid for
sources with arbitrary directivities in a range-independent waveguide with an arbitrary SSP.
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The proposed theoretical model is used to investigate the Doppler beam shift generated by a piston-like radiator
in a two-layer waveguide. The interpretations provided by this theoretical model reveal the underlying mechanism
involved. Moreover, the analysis demonstrates that the Doppler beam shift acts as a third mechanism in addition to
changing modal shapes and eigenvalues shifts, leading to significant differences that can be used to distinguish the
fields generated by a moving directional source and by the same source at rest.

The remainder of this paper is organized as follows. Section 2 presents the equations for the two-layer DSF
due to a moving directional source, including the exact governing wave equations and a general derivation of the
modal expression for the DSF. Section 3 presents numerical simulations, including validation cases and analyses of
the Doppler beam shift induced by a piston-like radiator moving in shallow water. Finally, conclusions are drawn in
Section. 4.

2. Normal-mode solution for Doppler-shifted field in an ocean–sediment waveguide
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Figure 1: Schematic of two-layer waveguide considered in present analysis, where the underwater domain is represented by
a soft-wall waveguide (with two Dirichlet boundaries). The infinite line source in the transverse direction moves horizontally
at a fixed depth 𝑧 = 𝑧′ with a constant moving velocity of 𝑣s. The sound speed of the water is depth-dependent. The
first plot shows the original coordinate system with a moving source and a fixed receiver. The second plot displays the
transformed coordinate system, in which the sound field received by the fixed hydrophone at 𝑡 is converted into a spatial
scan using a horizontal hydrophone array. The spatial scan spans from (𝑥, 𝑧) to (𝑥 − 𝑣𝑠𝑡, 𝑧), assuming that the source is
stationary in a homogeneous moving medium with a flow velocity of −𝑣𝑠.

The following analysis considers the two-layer waveguide shown in Fig. 1, with layers 1, and 2 representing the
ocean and sediment, respectively. Here, 𝜌𝑗 and 𝑐𝑗 with 𝑗 = 1, 2 represent the density and sound speed, respectively, of
each layer. For simplicity, the problem is reduced to a 2D range-independent waveguide. For the problem, 𝑥 and 𝑧 are
the range and depth coordinates, respectively, and we consider an infinite line source at a fixed depth 𝑧 = 𝑧′ below the
sea surface. The line source moves horizontally with a constant velocity of 𝑣𝑠. The following analysis presents the novel
NM model that fully accounts for the Doppler-affected modal shapes and eigenvalues. It begins by describing the exact
governing wave equations and subsequently introduces the modal projection method along with the modal solution for
an omni-directional point-source. The subsequent part of this section focuses on deriving the modal expression for the
DSF resulting from a directional radiator moving in a two-layer waveguide.
2.1. A novel normal-mode model for calculating the Doppler-shifted field due to a point source

moving in shallow water
Calculating the DSF due to a submerged moving source typically starts with the Helmholtz equation for a

motionless fluid but with a varying source position. Herein, the linearized fluid dynamics equations for a homogeneous
moving medium are recalled to calculate the flow-affected sound field. The DSF generated by a moving source in a
motionless medium then reduces to that excited by the same source at rest in an equivalent homogeneous moving
medium (Ostashev and Wilson, 2015). Therefore, the DSF due to the source moving to (𝑥′ + 𝑣𝑠𝑡, 𝑧′) at time 𝑡, with
a receiver fixed at (𝑥, 𝑧), is converted to a spatial scan using a horizontal hydrophone array. The spatial scan spans
from (𝑥, 𝑧) to (𝑥 − 𝑣𝑠𝑡, 𝑧), assuming that the source is stationary at (𝑥′, 𝑧′) in a homogeneous moving medium with
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a flow velocity of −𝑣𝑠. Fig. 1 illustrates this transformation from the original coordinate system, where the source is
moving, to the transformed coordinate system, where the source is at rest in a homogeneous moving medium. It is
important to note that in the transformed coordinate system, the spatial scan by the horizontal array does not introduce
any additional motion-induced effects; it simply changes the receiver position. The Doppler effect can be considered
by accounting for the motion of the medium.
2.1.1. Governing equations

The analysis assumes that the ocean is stratified, which means that the sound speed depends on 𝑧 only. The medium
moves with a positive flow velocity of 𝑣s in the negative 𝑥 direction to account for the source motion. There is a
motionless receiver at (𝑥, 𝑧), and at time 𝑡 = 0 there is a submerged source at (𝑥′, 𝑧′) moving with a constant velocity
of 𝑣s in the positive 𝑥 direction. Using the linearized fluid dynamics equations, the governing equations for the current
analysis are (Nijs and Wapenaar, 1990)

⎧

⎪

⎨

⎪

⎩

∇ ⋅ 𝐮 + 1
𝐾

( 𝜕
𝜕𝑡

+ 𝐯 ⋅ ∇
)

𝑝 = 0,

∇𝑝 + 𝜌
( 𝜕
𝜕𝑡

+ 𝐯 ⋅ ∇
)

𝐮 + 𝜌𝑢𝑧
𝜕𝐯
𝜕𝑧

= 0,
(1)

where 𝑝 and 𝐮 = [𝑢𝑥, 𝑢𝑧]T are the acoustic pressure and particle velocity in the water, respectively, 𝐯 = [−𝑣s, 0]T is
the total flow velocity that accounts for the source motion, and 𝐾 is the compression modulus. Here, the superscript T
denotes the transpose.

Applying the time–frequency Fourier transform to both the pressure and particle velocity gives the frequency-
domain wave equations, and introducing a new variable 𝜇 = 1 + 𝑣s𝑘r∕𝜔 yields

𝜕𝑈𝑧
𝜕𝑧

− i𝑘r𝑈𝑥 +
i𝜔
𝐾

𝜇𝑃 = 0,
−i𝑘r𝑃 + i𝜔𝜌𝜇𝑈𝑥 = 0,
𝜕𝑃
𝜕𝑧

+ i𝜔𝜌𝜇𝑈𝑧 = 0,

(2)

where 𝑃 (𝑘r, 𝑧, 𝜔), 𝑈𝑥(𝑘r, 𝑧, 𝜔), and 𝑈𝑧(𝑘r, 𝑧, 𝜔) are the Fourier transforms of 𝑝(𝑥, 𝑧, 𝑡), 𝑢𝑥(𝑥, 𝑧, 𝑡), and 𝑢𝑧(𝑥, 𝑧, 𝑡),respectively, with 𝑘r denoting the horizontal wavenumber in the water, and 𝜔 is the angular frequency. The depth-
dependent wave equation for 𝑃 is then obtained by eliminating 𝑈 from the first equation in Eq. (2):

𝜕2𝑃
𝜕𝑧2

+ (𝜇2𝑘2 − 𝑘2r )𝑃 = 0, (3)

where 𝑘 =
√

𝜔2𝜌∕𝐾 is the wavenumber, with the solution subject to the boundary conditions at the air–water and
water–sediment interfaces:

𝑃 |𝑧=0 = 0,
𝑃 |𝑧=−ℎ+ = 𝑃 |𝑧=−ℎ− ,
1
𝜌1

𝜕𝑃
𝜕𝑧

|

|

|

|𝑧=−ℎ+
= 1

𝜌2
𝜕𝑃
𝜕𝑧

|

|

|

|𝑧=−ℎ−
,

(4)

2.1.2. Modal projection method incorporating perfectly matched layers
Based on modal theory, the solution of the 2D wave equation can be written as

𝑝(𝑥, 𝑧, 𝑡) =
∑∞

n=1 𝐴(n)𝑃(n)(𝑧)
e−i𝑘r(n)(𝑥−𝑥′−𝑣s𝑡)

𝑘r(n)
, (5)

where 𝑃(n) are the eigenfunctions, 𝐴(n) are the modal amplitudes, 𝑘r(n) are the corresponding eigenvalues, and the
subscript n denotes the order of the eigenfunction. Note that 𝑃(n) are the solutions of Eq. (3) subject to the boundary
condition in Eq. (4). A modal-domain eigenequation can be obtained by substituting 𝑃(n) back into Eq. (3), and after
some rearranging, this yields

[𝐺0 + 𝐺1𝑘r(n) + 𝐺2𝑘2r(n)]𝑃(n)(𝑧) = 0, (6)
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Figure 2: Schematic of the underwater domain that is represented by a soft-wall waveguide (with two Dirichlet boundaries).
Perfectly matched layer is used to truncate the underwater domain to absorb outgoing waves.

where

𝐺0 =
𝜕2

𝜕�̂�2
+ 𝑘2𝑗 ,

𝐺1 = 2𝑘𝑗𝑀𝑗 ,
𝐺2 = 𝑀2

𝑗 − 1,

(7)

where𝑀𝑗 = 𝑣s∕𝑐𝑗 is the Mach number in the water (𝑗 = 1) or sediment(𝑗 = 2). Equation (6)—the square eigenequation
in 𝑘r(n)—is then solved using a modal projection method.

In the current analysis, the underwater domain shown in Fig. 2 is treated as a half-space (open waveguide) below a
Dirichlet boundary. A PML is used to truncate the half-space and absorb the outgoing waves at 𝑧 = ∞, thereby closing
the eigenequation associated with the open waveguide. Two Dirichlet boundary conditions are imposed at 𝑧 = 0 and
𝑧 = 𝐻 for the bounded space, with the PML extending from 𝑧 = 𝐷 to 𝑧 = 𝐻 . The PML is mathematically equivalent
to stretching the complex coordinates (Berenger, 1994), i.e.,

�̂� = 𝑧 + i∫
𝑧

0
𝜎(𝜀)d𝜀, (8)

where 𝜎(𝜀) is the damping function and 𝜀 = (𝑧−𝐷)∕(𝐻 −𝐷) is the dimensionless coordinate. Here, a second-degree
polynomial damping function is used, expressed mathematically as 𝜎(𝜀) = 𝜁𝜀2 (Singer and Turkel, 2004; Rabinovich
et al., 2010), where 𝜁 is a positive real damping coefficient controlling the rate of damping. From Eq. (8), we obtain

𝜕
𝜕�̂�

= 1
𝑠(𝑧)

𝜕
𝜕𝑧

,

d�̂� = 𝑠(𝑧)d𝑧,
(9)

where
𝑠(𝑧) = 1, 0 < 𝑧 < 𝐷,
𝑠(𝑧) = 1 + i𝜎(𝑧), 𝐷 < 𝑧 < 𝐻. (10)
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Next, 𝑃(n) are projected onto a series of basis functions selected by satisfying the two boundary conditions at 𝑧 = 0
and 𝑧 = 𝐻 :

⎧

⎪

⎨

⎪

⎩

𝑃(n)(𝑧) =
∑𝑁

m=1 𝑤(m,n)𝜙(m)(𝑧) = 𝚽𝐰,

𝜙(m)(𝑧) =
√

2
𝐻

sin
[m𝜋
𝐻

𝑧
]

.
(11)

where 𝜙(m) are the basis modes for the bounded space in the ocean, 𝑤(m,n) are the projection coefficients, 𝚽 and 𝐰
represent 1×𝑁 row vectors of the basis modes and projection coefficients, respectively, and 𝑁 and the subscript m are
the total number and order of the basis modes, respectively. Weighting Eq. (6) by 1

𝜌𝑗
𝚽𝑇 and integrating the weighted

eigenequation over 0 ≤ 𝑧 ≤ 𝐻 yields

∫ 𝐻
0

1
𝜌𝑗

𝚽𝑇 [𝐺0 + 𝐺1𝑘r(n) + 𝐺2𝑘2r(n)]𝑃(n)(𝑧)d�̂� = 0. (12)

Next, we consider the projection of 𝑃(n) onto the space spanned by 𝜙(m) and perform integration by parts to reduce
the second-order derivatives to first-order ones. Requiring 𝑃(n) to be continuous across the water–sediment interface,
we obtain the matrix equation

[𝚪 + 𝑘r𝚷 + 𝑘2r 𝚼]𝐖 = 0, (13)
where 𝐖 is an 𝑁 ×𝑁 projection-coefficient matrix, and 𝚪, 𝚷, and 𝚼 are

𝚪 = ∫ 𝐻
0 − 1

𝜌𝑗

[

1
𝑠(𝑧)

𝜕𝚽𝑇

𝜕𝑧
𝜕𝚽
𝜕𝑧

− 𝑘2𝑗 𝑠(𝑧)𝚽
𝑇𝚽

]

d𝑧,
𝚷 = ∫ 𝐻

0
1
𝜌𝑗

2𝑘𝑗𝑀𝑗𝑠(𝑧)𝚽𝑇𝚽d𝑧,
𝚼 = ∫ 𝐻

0
1
𝜌𝑗

(𝑀2
𝑗 − 1)𝑠(𝑧)𝚽𝑇𝚽d𝑧.

(14)

Note that analytical expressions can be derived for the integrals containing the first-order derivatives in 𝚪 and
the first-order term in 𝚼. However, the remaining parts in the above equations must be integrated numerically. The
numerical scheme follows the Clenshaw–Curtis quadrature rules (Waldvogel, 2006; He et al., 2020, 2021), which
provide excellent convergence using relatively few depth samplings; generally, five points per period of the basis modes
are sufficient to ensure good convergence (He et al., 2021). A generalized matrix eigenvalue problem can be obtained
by rearranging Eq. (13) as follows :

[

𝚪 0
0 𝚼𝑇

] [

𝐖
𝑘r𝐖

]

= 𝑘r
[

𝚷 𝚼
𝚼𝑇 0

] [

𝐖
𝑘r𝐖

]

. (15)

After solving the above eigenvalue problem, the eigenvalues must be sorted in order, and their eigenvectors
represent the projection coefficients. The eigenfunctions 𝑃(n)(𝑧) are reconstructed using the projection defined in
Eq. (11). It is evident that the generalized matrix eigenvalue problem exhibits the dependency of Mach number,
as the sub-matrix block, calculated by Eq. (14), is clearly a function of 𝑀𝑗 . Fundamentally, the depth-separated
wave equation, as per Eq. (6), yields distinct generalized matrix eigenvalue problems for different Mach numbers.
Consequently, this leads to the determination of various eigenvalues and eigenfunctions corresponding to varying
Mach numbers.
2.1.3. Omidirectional line-source and point-source solutions

The present analysis first considers the line-source solution, which is then converted to the point-source solution.
The modal amplitude of the line source in 2D is given by:

𝐴(n) =
1

Λ(m,n)
𝑃(n)(𝑧′), (16)
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where
Λ(m,n) = ∫ 𝐻

0
1
𝜌𝑗

𝑃(n)(𝑧)𝑃(m)(𝑧)d𝑧. (17)

Note that although Eq. (17) is not rigorously orthogonal because of the presence of both the flow and PMLs, it is
diagonally dominant, so the modal amplitudes can be approximated by calculating only the diagonals for Λ(m,n). This
leads to the modal expansion for a line source:

𝑝line(𝑥, 𝑧, 𝑡) = i
2
∑𝑁

n=1
𝑃(n)(𝑧′)𝑃(n)(𝑧)

Λ(n,n)
e−i𝑘r(n)(𝑥−𝑥′−𝑣s𝑡)

𝑘r(n)
. (18)

When considering the far-field form of a point-source solution, the DSF can be reduced to a series of 2D DSFs
corresponding to different azimuths. To account for the 1∕𝑅 spreading of the 2D DSF at each azimuth, the line-source
solution is first converted to the point-source solution. Here, 𝑅 =

√

(𝑥 − 𝑥′ − 𝑣s𝑡)2 + (𝑦 − 𝑦′)2 denotes the propagation
distance in cylindrical coordinates, where 𝑦 and 𝑦′ are the transverse coordinates of the receiver and the moving source,
repectively.

Next, the 2D DSF at each azimuth is calculated using the projected Mach number 𝑀𝑗 = 𝑣s cos 𝜃∕𝑐𝑗 , where
𝜃 = arccos[(𝑥−𝑥′−𝑣s𝑡)∕𝑅] is the azimuth angle. This allows us to consider the Doppler shift at field points away from
the 𝑥–𝑧 plane. Note that the projected Mach number is an approximation by neglecting azimuthal coupling described
by the derivatives with respect to 𝜃. However, compared to other flow-affected terms, these ones are insignificant in
the far field for range-independent problems (Elisseeff and Schmidt, 1997). As demonstrated by Elisseeff and Schmidt
(1997), the approximation remains valid for flow velocities up to 100 m/s, albeit with the restriction of a low Mach
number. The DSF at each azimuth is given by

𝑝point(𝑥, 𝑦, 𝑧, 𝑡) ≈ i√2𝜋e−
𝜋
4

i
∑𝑁

n=1
𝑃(n)(𝑧′)𝑃(n)(𝑧)

Λ(n,n)
e−i𝑘r(n)𝑅
√

𝑘r(n)𝑅
. (19)

It is noteworthy that the eigenvalues and eigenfunctions in the above equation are solved at each azimuth angle 𝜃
using the projected Mach number 𝑀𝑗 = 𝑣s cos 𝜃∕𝑐𝑗 . This implies that, the depth-separated wave equation, linked to
varying Mach numbers 𝑣s cos 𝜃∕𝑐𝑗 (Eq. (6))) and transformed into the generalized matrix eigenvalue problem (Eqs. (14
to (15)), must be solved multiple times in accordance with different azimuth angles required for the simulation.
2.2. Analytical modal expression for the Doppler-shifted field resulting from a moving directional

source
To derive the formula of the DSF generated by a moving directional radiator based on the normal mode theory, it

is helpful to start with the free-field, stationary scenario shown in Fig. 3. In the free field, the pressure field produced
by a stationary radiator (the directional source) can be considered as an integration of the monopole sources placed on
the source surface 𝐒, given by the equation

𝑝(𝑥, 𝑦, 𝑧) = ∫𝐒
𝑞(𝑥

′
, 𝑦

′
, 𝑧

′
)𝐺(𝑥, 𝑦, 𝑧; 𝑥

′
, 𝑦

′
, 𝑧

′
)d𝑥′d𝑦′d𝑧′ , (20)

where 𝑞(𝑥′ , 𝑦′ , 𝑧′ ) represents the strength of the monopole source, and 𝐺(𝑥, 𝑦, 𝑧; 𝑥′ , 𝑦′ , 𝑧′ ) is the free-field Green’s
function given by :

𝐺(𝑥, 𝑦, 𝑧; 𝑥
′
, 𝑦

′
, 𝑧

′
) = e−i𝑘|r′−r|

|r′ − r|
, (21)

where r′ = (𝑥′ , 𝑦′ , 𝑧′ ) and r = (𝑥, 𝑦, 𝑧) denote the position vector of the monopole source and the receiver, respectively.
Applying the Fraunhofer approximation, the far-field form of the product 𝑘|r′ − r| can be approximated as:
𝑘|r′ − r| ≈ 𝑘|r0 − r| − 𝑘(𝛼 cos 𝜃 cos𝜙 + 𝛽 sin 𝜃 cos𝜙 + 𝛾 sin𝜙), (22)

where r0 = (𝑥0, 𝑦0, 𝑧0) represents the position of the radiator’s acoustic center, (𝜃, 𝜑) is the observation angle, and the
local coordinate of each monopole source is given by
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Figure 3: Schematic of the far-field approximation for deriving the directivity of a radiator. The position information is
displayed in red and blue for the acoustic center of the radiator and the point placed on the source surface 𝐒, respectively.

𝛼 = 𝑥′ − 𝑥0, (23a)
𝛽 = 𝑦′ − 𝑦0, (23b)
𝛾 = 𝑧′ − 𝑧0. (23c)

By substituting Eq. (22) back into Eq. (20), the far field of the radiation from the motionless source can be written
as

𝑝(𝑥, 𝑦, 𝑧) = e−i𝑘|r0−r|

|r0 − r|
𝐷(𝜃, 𝜑), (24)

where 𝐷(𝜃, 𝜑) is the radiator directivity, which is also known as the scattering function in acoustic scattering problems.
𝐷(𝜃, 𝜑) can be expressed as

𝐷(𝜃, 𝜑) = ∫𝐒
𝑞(𝑥0 + 𝛼, 𝑦0 + 𝛽, 𝑧0 + 𝛾)ei𝑘(𝛼 cos 𝜃 cos𝜑+𝛽 sin 𝜃 cos𝜑+𝛾 sin𝜑)d𝛼d𝛽d𝛾, (25)

Now, let’s consider the same radiator horizontally moving in a shallow water waveguide. The DSF due to the
moving radiator can be obtained by replacing the Green’s function in Eq. (21) with that determined in the waveguide
with uniform flow (Eq. (19)). Substituting Eq. (19) back into Eq. (20) and, after exchanging the order of summation
and integration, this yields

𝑝(𝑥, 𝑦, 𝑧, 𝑡) = i
√

2𝜋e−
𝜋
4

i ∑

𝑁

𝑃(n)(𝑧)
Λ(n,n)

√

𝑘r(n) ∫𝐒
𝑞(𝑥

′
, 𝑦

′
, 𝑧

′
)𝑃(n)(𝑧

′
)e−i𝑘r(n)𝑅

√

𝑅
d𝑥′d𝑦′d𝑧′ , (26)

Expanding the eigenfunction with the Taylor series at the center depth 𝑧0 and then utilizing the Fraunhofer
approximation in the 𝑥 − 𝑦 plane, the integration in Eq. (26) can be written as

𝐴(𝑛) =
e−i𝑘r(n)𝑅0
√

𝑅0
∫𝐒

𝑞(𝑥0 + 𝛼, 𝑦0 + 𝛽, 𝑧0 + 𝛾)
∑

b=0

[

1
b!

db𝑃(n)(𝑧)
d𝑧b

|

|

|

|𝑧=𝑧0
𝛾b
]

ei𝑘r(n)(𝛼 cos 𝜃+𝛽 sin 𝜃)d𝛼d𝛽d𝛾, (27)
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where 𝑅0 =
√

(𝑥 − 𝑥0 − 𝑣s𝑡)2 + (𝑦 − 𝑦0)2 represents the horizontal range between the acoustic center and the receiver.
The Taylor series can be divided into two parts according to odd and even orders

𝑇(n) = 𝑇o(n) + 𝑇e(n), (28a)

𝑇o(n) =
∑

b=0
1

(2b + 1)!
d(2b+1)𝑃(n)(𝑧)

𝑑𝑧2b+1
|

|

|

|𝑧=𝑧0
𝛾2b+1, (28b)

𝑇e(n) =
∑

b=0
1

(2b)!
d(2b)𝑃(n)(𝑧)

𝑑𝑧2b
|

|

|

|𝑧=𝑧0
𝛾2b. (28c)

The eigenfunctions 𝑃(n)(𝑧) satisfy Eq. (3), allowing us to simplify Eq. (28) by reducing the order of derivation of
𝑃(n)(𝑧) based on Eq. (3):

𝑇o(n) =
d𝑃(n)(𝑧)

d𝑧
|

|

|

|𝑧=𝑧0

1
𝑘z(n)

sin(𝑘z(n)𝛾), (29)

𝑇e(n) = 𝑃n(𝑧0) cos(𝑘z(n)𝛾), (30)

where 𝑘z(n) =
√

𝜇2𝑘2 − 𝑘2r(n) is the Doppler-shifted vertical wavenumber
Therefore, Eq. (27) can be rewritten as follows:

𝐴(n) = e−i𝑘r(n)𝑅0
√

𝑅0
[𝐴o(n) + 𝐴e(n)], (31a)

𝐴o(n) =
d𝑃(n)(𝑧)

d𝑧
|

|

|

|𝑧=𝑧0

1
𝑘z(n) ∫𝐒

𝑞(𝑥0 + 𝛼, 𝑦0 + 𝛽, 𝑧0 + 𝛾)ei𝑘r(n)(𝛼 cos 𝜃+𝛽 sin 𝜃) sin(𝑘z(n)𝛾)d𝛼d𝛽d𝛾, (31b)

𝐴e(n) = 𝑃(n)(𝑧0)∫𝐒
𝑞(𝑥0 + 𝛼, 𝑦0 + 𝛽, 𝑧0 + 𝛾)ei𝑘r(n)(𝛼 cos 𝜃+𝛽 sin 𝜃) cos(𝑘z(n)𝛾)d𝛼d𝛽d𝛾, . (31c)

By applying the Euler equation to the sine and cosine terms in the above equations, 𝐴o(n) and 𝐴(e)n can be further
rewritten as

𝐴o(n) =
1
2i

d𝑃(n)(𝑧)
d𝑧

|

|

|

|𝑧=𝑧0

1
𝑘z(n) ∫𝐒

𝑞(𝑥0 + 𝛼, 𝑦0 + 𝛽, 𝑧0 + 𝛾)ei𝑘r(n)(𝛼 cos 𝜃+𝛽 sin 𝜃)[ei𝑘z(n)𝛾 − e−i𝑘z(n)𝛾 ]d𝛼d𝛽d𝛾 (32)

𝐴(e)n = 1
2
𝑃(𝑛)(𝑧0)∫𝐒

𝑞(𝑥0 + 𝛼, 𝑦0 + 𝛽, 𝑧0 + 𝛾)ei𝑘r(n)(𝛼 cos 𝜃+𝛽 sin 𝜃)[ei𝑘z(n)𝛾 + e−i𝑘z(n)𝛾 ]d𝛼d𝛽d𝛾 (33)

It should be noted that the Doppler-shifted vertical and horizontal wavenumbers have the following relations
𝑘r(n) = 𝑘(n) cos(𝜑n), (34a)
𝑘z(n) = 𝑘(n) sin(𝜑n). (34b)

where 𝑘(n) = 𝑘 + 𝑀𝑘r(n) is the Doppler-shifted wavenumber of the nth mode, 𝜑n is the grazing angle of the up-
and down-going plane wave of the nth mode. Using these relations and the formula for directivity given by Eq. (25),
Eqs. (32)-(33) can be further reduced to
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Table 1
Parameters of shallow-water environment in simulations.

Parameter Value
Water depth 54 m

Water sound speed 1500 m/s
Water density 1000 kg/m3

Seabed sound speed 1650 m/s
Seabed sound attenuation 0.0 dB/𝜆

Seabed density 1900 kg/m3

𝐴o(n) =
1
2i

d𝑃n(𝑧)
d𝑧

|

|

|

|𝑧=𝑧0

1
𝑘z(n)

[𝐷(𝜃, 𝜑n, 𝐾n) −𝐷(𝜃,−𝜑n, 𝐾n)] (35)

𝐴e(n) =
1
2
𝑃(n)(𝑧0)[𝐷(𝜃, 𝜑n, 𝐾n) +𝐷(𝜃,−𝜑n, 𝐾n)] (36)

As a result, the far-field sound pressure generated by the moving radiator in the shallow water waveguide can be
obtained by substituting Eq. (31) and Eqs. (35)-(36) back into Eqs. (26)-(27)

𝑝(𝑥, 𝑦, 𝑧, 𝑡) = i
√

2𝜋e−
𝜋
4

i ∑

𝑁
[𝐴o(n) + 𝐴e(n)]𝑃(n)(𝑧)

e−i𝑘r(n)𝑅0
√

𝑘r(n)𝑅0
. (37)

3. Numerical simulations
In this section, we present the results of numerical simulations. First, we present benchmarking of the proposed

theoretical model for underwater acoustic propagation from an omnidirectional moving source. Next, we demonstrate
and interpret the Doppler-affected changing modal shapes and eigenvalue shifts using the case of an omnidirectional
source. Finally, we consider the case of a moving directional radiator, in which the phenomenon of Doppler beam shift
is investigated using the proposed theory. In these simulations, the selection of the basis mode number 𝑁 followed
the same rule as that reported by He et al. (2021). Their suggestion is that computational efficiency and accuracy
can be guaranteed by setting 𝑁 = 3𝑁cut (where 𝑁cut = 2𝐻𝑓∕𝑐1 represents the number of cut-off basis modes),
and this was found to provide a reasonable compromise for the present study; thus, this value was used for the all
the simulations conducted in this work. Additionally, in line with the parametric study by He et al. (2021), the PML
thickness was set to be 3𝜆, with 𝛽 = 5𝑁0.25. The simulations were implemented using MATLAB (MathWorks, Natick,
MA, USA) installed on a laptop with an Intel Core i9-13900K CPU (Intel, Santa Clara, CA, USA) and 128 GB RAM.
All simulations considered a point source with unit amplitude, and the sound-field results are given by the level (in
decibels) relative to the free-space source level at 1 m. Typically, the free-space source level is of 120 dB 𝑟𝑒 1𝜇 Pa2
at 1 m in underwater acoustics. This means that, if the pressure observed at a point in the channel is −30 dB, then the
actual signal level at the point is 90 dB.
3.1. Moving omnidirectional source
3.1.1. Model validation

We benchmarked the proposed model for the problem of underwater acoustic propagation from a submerged
monopole source moving in a two-layer shallow-water waveguide. The benchmark solution was obtained by a 2D
wavenumber integration (Schmidt and Kuperman, 1994; Buckingham and Giddens, 2006) that accounts for Doppler
effects in 3D. An analytical NM model (Buckingham and Giddens, 2006) was also applied for comparison purposes.
The waveguide parameters are given in Table 1. The source was placed at a depth of 6 m and was moving horizontally
with a constant velocity of 50 m/s. The source frequency was 84 Hz, below which mode 4 in the water was cut off for
a stationary source.
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Figure 4: Relative levels (RLs) received at a depth of 30 m in the (a) 𝑦 = 0 m plane and (b) 𝑦 = 5000 m plane from
a source moving at a depth of 6 m. The source frequency was 84 Hz. For comparison, the results from 2D wavenumber
integration and the conventional NM-based model are shown by the solid blue and dashed-dotted black lines, respectively.

Figure 4 shows plots of the relative levels (RLs) received at 30 m in the 𝑦 = 0 m and 𝑦 = 5000 m planes, where
the horizontal axis 𝑣s𝑡 represents the horizontal range between the moving source and the point of closest approach
to the fixed receiver; the source is approaching the receiver when 𝑣s𝑡 > 0 m. Figure 4 shows an apparent asymmetric
pattern about 𝑣s𝑡 due to the Doppler-induced modal cut-offs. The excellent agreement with the wavenumber-integration
solution demonstrates the effectiveness of the proposed model in calculating underwater sound propagation from a
moving monopole source. As can be seen, there are large discrepancies from the analytical NM model, especially
for 𝑣𝑠𝑡 < 0 m. This demonstrates one advantage of the proposed method over the conventional NM model, i.e., that
the contribution of branch-line integrals is accounted for by accommodating higher-order modes. Evanescent modes
result from higher-order modes, the attenuating behavior of which coincides with that of the continuous spectrum
(branch-line integrals) (He et al., 2021). The analytical NM model considers only the modal contributions and neglects
the branch-line integrals that become dominant when a mode is about to be cut off.

Figure 5 shows plots of the RLs in the 𝑦 = 0 m and 𝑧 = 35 m planes, demonstrating visible Doppler-induced
modal cut-offs more straightforwardly. These results also confirm the correctness of Eq. (19) in accounting for the
Doppler shift at points away from the 𝑥–𝑧 plane. In Fig 5 (a), a distinct interference transition from three modes to two
modes can be observed as the source traverses its closest approach. This phenomenon arises due to the down-shifting
of frequency behind the source motion. Specifically, when the source moves outbound relative to the receiver, the
frequency decreases from 84 Hz to a value below which mode 3 becomes cut-off. However, the modal cutoff induced
by motion does not precisely coincide with the closest approach. The red line annotated in Fig 5 (b) indicates the
azimuth angle at which mode 3 initiates its cut-off. A comprehensive discussion and approximation of this angle are
provided later in Section 3.1.2.
3.1.2. Effects of the changing modal shape and eigenvalue Doppler shift

To interpret the asymmetric pattern observed in Fig. 5, we present a modal analysis of underwater propagation. This
analysis highlights the advantages of our proposed NM model, as it accurately captures the effects of Doppler-induced
changes in modal shape and eigenvalue.

Figure 6 presents the first three waterborne modes as functions of 𝜃l, which represents the azimuth launch angle
between the motion track and the line connecting the source and receiver. The mode shape is determined by extracting
the column vector of 𝐖 that corresponds to the eigenvalue from the solution to Eq. (15). The first two waterborne mode
shapes remain relatively unchanged due to the low Mach number in water. However, the third mode exhibits significant
changes in shape, transitioning from a propagating mode to a leaky mode as the source moves from inbound to outbound
positions. This behavior corresponds to the modal cut-off observed in Fig. 5. Importantly, it should be noted that such
an effect is not accounted for in the conventional NM model, leading to significant discrepancies when compared to
the reference solution.
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Figure 5: RLs received in the (a) 𝑦 = 0 m plane and (b) 𝑧 = 35 m plane. The source was moving at a depth of 6 m with
a source frequency of 84 Hz. The source motion speed was 50 m/s. The red line annotated in the lower row distinguishes
the angle where mode 3 starts to cut-off.

Next, we analyze the eigenvalue Doppler shift. To differentiate the Doppler impacts on various modes, it is helpful
to express the eigenvalue shift as a frequency shift. Referring to Schmidt and Kuperman (1994), the Doppler-shifted
angular frequency for a specific waterborne mode can be expressed as

Ω(n) = 𝜔 + 𝑘r(n)𝑣s cos 𝜃l. (38)
Figure 7(a) presents the ratio of the frequency Doppler shift as a function of 𝜃l. Due to modal dispersion, different

modes exhibit varying Doppler shifts; the lower the mode number, the greater the frequency shift. Consequently,
classifying the frequency shifts in the spectrum allows different modes to be distinguished. It is evident that each mode
exhibits a pair of lower and upper shifted frequencies, depending on whether the source is moving outbound or inbound
relative to the receiver. Specifically, for a given mode, the down-shifted and up-shifted frequencies can be approximated
using Eq. (38) by assigning a negative (𝜃l > 90◦) or positive (𝜃l < 90◦) projected motion speed (𝑣s cos 𝜃l) based on
the source-receiver relative position. For the first three modes, the down-shifted and up-shifted frequencies

(Ω(n)
2𝜋

)

are 81.3 and 86.9 Hz, 81.4 and 86.8 Hz, and 81.6 and 86.6 Hz, respectively. This result confirms that different modes
undergo distinct eigenvalue Doppler shifts.

The imaginary part of the eigenvalue corresponding to mode 3, depicted in Fig. 6(b), decreases rapidly and becomes
nonzero at around 𝜃l = 103.5◦. This indicates mode cut-off at a specific azimuth launch angle (𝜃c) under the given
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Figure 6: Waterborne mode shape as a function of azimuth launch angle with a source moving from inbound to outbound
at a motion speed of 50 m/s at 84 Hz. The solid and dashed lines represent the normalized real and imaginary parts of
the mode shapes, respectively. The mode shape is determined by extracting the column vector of 𝐖 that corresponds to
the eigenvalue from the solution to Eq. (15).

conditions. To estimate 𝜃𝑐 , the Doppler-shifted frequency and the cut-off frequency for mode 3 are presented in the same
figure. It is evident that the turning point, where the imaginary part of the eigenvalue starts to drop significantly, aligns
with the azimuth launch angle at which the Doppler-shifted frequency approaches the cut-off frequency. Consequently,
𝜃c can be estimated by equating the frequency Doppler shift 𝑓 ′ =

𝑓
1 −𝑀 cos 𝜃c

to the modal cut-off frequency 𝑓c,

where 𝑓c =
(𝑛 − 0.5)𝑐1𝑐2
2ℎ

√

𝑐22 − 𝑐21

. Solving this equation allows one to determine

𝜃𝑐 = arccos
[

1
𝑀

−
𝑓

𝑀𝑓c

]

. (39)

It is essential to acknowledge that Eq. (39) is valid solely for an iso-velocity water column. In the presence of
an SSP, this equation may either overestimate or underestimate 𝜃𝑐 , depending on whether the profile exhibits strong
down-refraction or up-refraction. Figure 5(b) includes an annotation of 𝜃c based on Eq. (39), denoting the azimuth
launch angle at which the sound field starts to decay as mode 3 transitions into a leaky mode.
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Figure 7: (a) The ratio of the frequency Doppler shift for first five modes as a function of azimuth launch angle 𝜃l; (b) The
imaginary part (blue solid line) of the eigenvalue and the frequency Doppler shift (red solid line) for mode 3 as a function
of azimuth launch angle 𝜃l. The black dashed line annotates the cut-off frequency for mode 3, and the blue and green solid
dots represent the turning point, where the eigenvalue for mode 3 starts to become a complex value, and the azimuth
angle, at which mode 3 starts to be cut-off, respectively. The source motion speed is 50 m/s, and the unshifted frequency
is 84 Hz.

Furthermore, considering the low Mach number in the water, modal cutoff induced by motion may be less
pronounced than explored in this article, particularly when the speed of the source motion is extremely low. Specifically,
when the sediment is lossy, each mode experiences attenuation as it propagates along the waveguide, the eigenvalue
of which transitions from a pure real to a complex number. This mechanism of modal attenuation closely mirrors that
observed in the modal cutoff discussed in this article. Consequently, the modal attenuation caused by seabed loss may
overshadow that attributed to the source motion, particularly at low speeds. Nonetheless, the motion of the source
introduces fore-aft asymmetry into modal attenuation, potentially leading to fore-aft asymmetry in the DSF, especially
at lower frequencies (Buckingham and Giddens, 2006).
3.2. Moving directional source

In this section, we present the results of simulations of the DSF excited by a directional source moving in refractive
shallow water and examine the phenomenon of Doppler beam shift. In practice, high-spatial-resolution directivity
is observed when the source frequency is high. The proposed method enables effective calculations of the DSF by
providing a semi-analytical solution. In these simulations, the directional source is defined as a piston-like radiator in
the vertical direction and is uniform in the horizontal direction. It is expressed as

𝐷(𝜃, 𝜑, 𝑘) =
2𝐽0(𝑘𝑎 sin(𝜑 − 𝜑′))

𝑘𝑎 sin(𝜑 − 𝜑′)
, (40)

where 𝑎 is the radius of the piston-like radiator and 𝜑′ is the beam grazing angle. The value of 𝑎 was set to 1 m, and
the initial value of 𝜑′ was set to 0◦. The environmental parameters of the waveguide remained unchanged from those
presented in Table 1, with the exception of the sound speed in the water column. Here, we used the SSP measured
during the Shallow Water Experiment 2006 (SWE06)(Tang et al., 2007), as shown in Fig. 8(a), to demonstrate that the
derived formula is valid for a refractive shallow-water environment. The source was moving horizontally at 𝑧 = 30 m
with a velocity of 100 m/s, and its frequency was set to 5000 Hz.

Figure 8(c) displays the RLs in the 𝑦 = 0 plane for the moving piston-like radiator. For comparison, Fig. 8(b) also
shows the case of a moving omnidirectional source. Comparing Figs. 8(b) and 8(c) reveals that the piston-like radiator
produces a non-uniform field distribution in the near field and generates a more pronounced focusing effect along the
channel axis at 𝑧 = 30 m than the omnidirectional source. Unlike the omnidirectional source, which excites every
propagating mode, the piston-like directivity (0◦ grazing angle) primarily enhances low-order modes that converge
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Figure 8: RLs received in the 𝑦 = 0 m plane at 5000 Hz with (b) omnidirectional and (c) directional sources. The SWE06
SSP [shown in panel (a)] is considered in this case, and the source directivity in panel (c) is piston-like. The source motion
speed is 100 m/s.

to the channel axis, as indicated by Eq. (37). Consequently, the piston-like radiator scenario exhibits a noticeable
channel-axis effect.
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Figure 9: Comparison of the effective directivity evaluated by the near-field DSF on the circle shown in the magnified plot
of Fig. 8(c), with the theoretical directivity of a piston-like radiator. The source motion speed is 100 m/s.
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Unfortunately, there is currently no benchmark procedure available for verifying the accuracy of the proposed
model in the case of a moving directional source. However, to assess the effectiveness of the model, we can consider
the effective directivity of the radiator by normalizing the near-field DSF. To do this, we extract the near-field DSF when
the source is outbound using a circle with a radius of 20 m, as shown by the dashed white line in the magnified plot
of Fig. 8(c). Figure 9 presents the effective directivity evaluated from the near-field DSF, which exhibits excellent
agreement with the theoretical directivity. This confirms that the proposed model can reproduce the correct field
distribution for a moving directional source.

Figure 10: RLs received in the 𝑦 = 0 m plane at 5000 Hz for directional sources with initial beam grazing angles of (a) 5◦,
(b) 10◦, and (c) 30◦, respectively. The source motion speed is 100 m/s.

We next investigate the DSFs produced by radiators with varying beam grazing angles 𝜑′, and the corresponding
results are shown in Fig. 10. As 𝜑′ becomes steeper (𝜑′ = 10◦), the channel-axis propagation gradually diminishes.
Instead, the downward-directed beam emitted by the radiator follows a geometry reflection path interacting with the
bottom, and this subsequently reappears near the surface to create a zone of high sound intensity, which bends back
towards to the seabed before even interacting with the sea surface. When 𝜑′ is increased to 30◦, surpassing the critical
angle of the channel duct (approximately 10◦), the beam ray emitted by the radiator escapes from the channel duct,
resulting in propagation patterns characterized by surface and bottom bounces without refraction by the SSP. Moreover,
since the steep 𝜑′ = 30◦ approaches the critical angle of the seafloor (𝜑c), the propagation exhibits noticeable
attenuation. These results confirm that the proposed model accurately describes the DSFs produced by radiators with
different directivities in a refractive shallow-water environment.
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3.2.1. Doppler beam shift
Although the DSF pattern shown in Fig. 10 exhibits weak fore–aft asymmetry, as previously observed in Fig. 5,

there are considerable differences between the inbound and outbound DSFs. These differences arise from changing
modal shapes, eigenvalue shifts, and the shift of the beam emitted by the moving radiator, known as the Doppler beam
shift. In this section, we focus on investigating the Doppler beam shift in iso-velocity shallow water using the proposed
theory. To specifically analyze the effect of the Doppler beam shift without interference from refraction, we set the
water sound speed to a constant value of 1500 m/s, and all other simulation parameters were kept consistent with those
used in the simulation corresponding to Fig. 8.

To visualize the Doppler beam shift, Fig. 11 displays the differences in the DSF between the cases of inbound and
outbound source motion for three beam grazing angles 𝜑′ (by subtracting the DSF when the source moves outbound
from that when it moves inbound). The “blue–red” interference pattern of the DSF differences indicates that the beam
emitted by the source undergoes a shift when it moves from inbound to outbound. Moreover, steeper grazing angles of
the beam are associated with larger beam shifts. According to Eq. (37), the source directionality can be considered as
the modal excitation, and the corresponding weighted coefficient is based on the grazing angle of the up- and down-
going plane waves of each mode. As the source motion induces the eigenvalue Doppler shift, the grazing angle of the
modal plane wave will also shift, resulting in a shift of the modal weighting coefficient compared to the scenario of
a stationary source. Therefore, as the source moves from inbound to outbound, the propagating mode excited by the
dominant beam energy changes from higher to lower modes, consequently causing the Doppler beam shift.

Figure 11: DSF differences between the inbound and outbound cases for beam grazing angles of (a) 15◦, (b) 30◦, and
(c) 45◦. The source motion speed is 100 m/s, and the source frequency is 5000 Hz.

To gain insight into the underlying physics of the Doppler beam shift from the perspective of geometric acoustics,
we present a ray interpretation that quantitatively links the grazing angles of the beam to the Doppler beam shifts. In
Fig. 12, the source 𝐒 launches the unshifted beam with a grazing angle of 𝜑′ while moving horizontally with velocity
𝑣𝑠. The beam ray ahead of the moving source arrives at the bottom at point A. The beam ray emitted by the same
source at rest will arrive at point B ahead of point A. Based on the geometric relation shown in Fig. 12, we can derive
the down-shifted beam angle:

Δ𝜑′ =
𝐀𝐁 sin(𝜑′)

𝐒𝐀
=

𝑣s cos 𝜃l sin(𝜑′)
𝑐1

. (41)
Note that when the source moves outbound, the ray theory assumes that the beam will be up-shifted by the same

angular shift as the inbound source motion. Figure 13(a) compares the exact Doppler beam shift with the beam shift
approximated by Eq. (41) as functions of 𝜑′. The exact beam shifts are calculated by subtracting the shifted beam for
the inbound or outbound source motion from the unshifted beam, with the launch angle set to be 0 and 𝜋 for the inbound
and outbound cases, respectively. The approximated beam shift closely matches the Doppler beam shift but is slightly
lower than the inbound Doppler beam shift. This can be explained by the fact that the energy maximum of the beam
will be weighted toward the mode represented by a pair of up- and down-going plane waves with a grazing angle of
±𝜑′ relative to the horizontal. When the source is inbound, the grazing angle of each modal plane wave is up-shifted,
meaning 𝜑′

in > 𝜑′out. From the above analysis, it is evident that larger 𝜑′ values correspond to larger Doppler beam
shifts, which explains the slight discrepancy between the approximated beam shift and the inbound Doppler beam shift
as evaluated numerically.

To further validate the proposed theoretical model and its agreement with the ray interpretation, Fig. 13(b)
illustrates the Doppler beam shift as a function of the motion speed of the source with a beam grazing angle of 70◦.
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Figure 12: Ray schematic showing the interpretation of the Doppler beam shift.
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Figure 13: Comparisons of exact Doppler beam shifts evaluated from the proposed model (dotted blue lines and dashed
red lines, respectively) with the beam shift approximated by Eq. (41) (solid black lines) as a function of: (a) the beam
grazing angle and (b) of the motion speed of the radiator. The source motion speed in (a) is 100 m/s, and the beam
grazing angle in (b) is 70◦.

Once more, the results obtained from the theoretical model closely align with the predictions from the ray theory,
providing further confirmation of the accuracy of Eq. (41) and the overall validity of the theoretical model.
3.2.2. Beam energy transfer

Based on Eq. (41), one might expect that the differences between the inbound and outbound DSFs would
monotonically increase with increasing 𝜑′. However, it is important to note that the derivation of Eq. (41) assumes a
free-field condition, neglecting the waveguide physics. In the presence of the sea surface and seafloor, certain modes
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Figure 14: Bias errors (BEs) between the inbound and outbound DSFs for different beam grazing angles for scenarios with
(a) a softer seabed with the default parameters and (b) a harder seabed. The dark-cyan vertical lines indicate the critical
angle of the seafloor 𝜑c. The source motion speed is 20 m/s.

are cut off and tend to leak into the seabed half-space based on their modal plane wave’s propagating angle, which can
be steeper than the critical angle of the seafloor 𝜑c. Consequently, anomalies in the differences between the inbound
and outbound DSFs may occur when the radiator’s beam sweeps over 𝜑c. To demonstrate this, the analysis considers
the bias errors (BEs) between the inbound and outbound DSFs for different 𝜑′ values. The source motion speed is
20 m/s in this case, and other parameters remain unchanged. The BE is defined

BE = 1
𝑄

√

√

√

√

√

∑𝑄
𝑞=1(|𝑝in| − |𝑝out|)2
∑𝑄

𝑞=1 |𝑝in|2
. (42)

For different scenarios of the beam grazing angle 𝜑′. In fairness, the maximum horizontal range used for evaluating
BE must cover an equal number of geometric reflections for various beam grazing angles. Thus, the maximum
horizontal range is defined as 𝜏 ℎ − 𝑧′

tan(𝜑′)
for both inbound and outbound source motion, with 𝜏 representing a scaling

factor controlling the maximum horizontal range. To evaluate the BE, 100 field points were evenly sampled along the
vertical direction from 𝑧 = 0 to 𝑧 = 54 m, while the horizontal range was uniformly divided into 1024 samples. The
results were obtained in the 𝑦 = 0 m plane. Figure 14 shows the BE as a function of 𝜑′ for various horizontal ranges.
Additionally, Fig. 14(b) provides a comparison with the case of a hard seafloor, where the density and sound speed are
2200 kg/m3 and 2700 m/s, respectively. The dark-cyan vertical lines in Fig. 14 represent 𝜑c, which is the critical angle
of the seafloor.

The BEs exhibit an overall upward trend with increasing 𝜑′ (<20◦), and larger errors are observed for larger
horizontal ranges. This behavior is attributed to the dominant beam energy exciting propagating modes at shallow
𝜑′, resulting in a phase difference between the inbound and outbound DSFs that accumulates as the horizontal range
increases.

For 𝜑′ values close to 𝜑c, pronounced peaks in the BE are observed, with higher peaks corresponding to larger
horizontal ranges. This phenomenon occurs because the radiator emits a beam with a certain lobe width, allowing only
a fraction of the energy to penetrate the sediment near 𝜑𝑐 . This portion of energy is weighted toward leaky modes,
while the remaining energy remains trapped within the waveguide and propagates. As the source moves from inbound
to outbound, 𝜑′ gradually decreases from above 𝜑c to below 𝜑c, leading to a reduction in the total energy of leaky
modes. Consequently, the apparent asymmetry in the DSF occurs as 𝜑′ sweeps over 𝜑c.

For 𝜑′ values exceeding 𝜑c, the BE decreases with increasing horizontal range. This can be attributed to the
dominant beam energy being weighted toward leaky modes in this scenario. Significant differences between the
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inbound and outbound DSFs produced by a moving directional radiator are observed only in short ranges, where
leaky modes can temporarily propagate with exponential decay in their amplitudes. The analysis highlights that, apart
from changing modal shapes and eigenvalue shifts, the considerable differences between the inbound and outbound
DSFs produced by a directional radiator moving in shallow water can be attributed to a third mechanism, known as the
Doppler beam shift.
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Figure 15: Bias errors (BEs) between the inbound and outbound DSFs as a function of the beam grazing angle for various
motion speeds. The dark-cyan vertical lines indicate the critical angle of the seafloor 𝜑c. The maximum horizontal range
is 𝜏 = 300. The environment parameters remain the same as those used in Fig 14 (a).

It is crucial to recognize that the Doppler beam shift may be less pronounced than investigated in this article when
considering a low-speed source, such as a towed transducer. Nevertheless, the above analysis highlights that the Doppler
beam shift depends not only on motion speed but also on the beam grazing angle. Specifically, when beam grazing angle
exceeds the seabed critical angle, the fore-aft asymmetry in the DSF resulting from the beam shift remains significant
at near propagation ranges. Therefore, a low-speed source with a steep grazing beam may induce detectable fore-aft
asymmetry in the DSF at the near-field. Additionally, Figure 15 illustrates the BEs between the inbound and outbound
DSFs as a function of the beam grazing angle for different motion speeds. In this case, the maximum horizontal range
is set to 𝜏 = 300, and other parameters remain default as those used for Fig 14 (a). Despite the fore-aft asymmetry in
the DFS weakening as the source slows down, pronounced peaks are still observable at the seabed critical angle, even
at a low motion speed of 5 m/s. This suggests that, even for a low-speed directional source, the characteristic of the
fore-aft asymmetry in the DFS can be enhanced when the beam grazing angle sweeps the critical angle of the seafloor.
This enhancement may prove useful in distinguishing an underwater source operating at a low-speed mode from the
same source at rest.

4. Concluding remarks
This paper introduces a semi-analytical method for calculating the DSF resulting from a directional moving source

in a range-independent waveguide. The normal-mode model developed here accurately captures Doppler-induced
effects, encompassing changes in modal shape, eigenvalue Doppler shift, and branch-line integral contributions. To
resolve the eigenproblem of the open waveguide, we implement a PML to truncate the half-space seabed. Subsequently,
the eigenmodes of the truncated waveguide are projected onto the space bounded by the sea surface and the outer
PML boundary. This projection yields a closed generalized matrix eigenproblem, enabling accurate determination
of the eigenvalues. The method ensures that no roots are missed, and it exhibits convergence to an exact solution
with increasing numbers of modes, as it explicitly solves the full-wave equation for a homogeneous moving medium.
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Additionally, this normal-mode model provides valuable insights into waveguide physics when compared to a fully
numerical approach.

Furthermore, based on the principle of wave superposition, we have established an analytical, normal-mode
solution for the DSF produced by a moving directional source in the range-independent shallow water. Instead of
evaluating the numerical integral of field superposition using an array of equivalent sources, we derive the analytical
solution by introducing the Fraunhofer far-field approximation and a Taylor-series expansion to the integral kernel.
The analytical solution derived expresses the DSF excited by the moving radiator as a sum over eigenmodes, with the
modal excitation determined by the source directivity depending upon the grazing angle of each pair of modal plane
waves. The derived modal expression is rigorous and thus valid for any type of directional source moving horizontally
in a range-independent environment with an arbitrary SSP.

The proposed theoretical model was employed to investigate the Doppler beam shift produced by a piston-like
radiator moving in a two-layer waveguide. The model provided valuable insights, revealing that the Doppler beam
shift is due to the angular offset of each pair of modal plane waves. This finding is consistent with the ray theory,
and it was observed that steep beam grazing angles lead to significant Doppler beam shifts. Additionally, the analysis
demonstrated that the DSF exhibits apparent asymmetry when the beam grazing angle sweeps the critical angle of the
seafloor. These results confirm that the Doppler beam shift acts as a new mechanism, causing substantial differences
between the fields generated by a moving directional source and by the same source at rest, allowing them to be
distinguished. This understanding may find practical applications in underwater acoustic detection of moving targets.
The enhanced fore-aft asymmetry in the DSFs, resulting from a moving directional source’s beam sweeping over the
critical angle of the seafloor, holds potential information for estimating seafloor parameters. This aspect will be further
investigated in future work.
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