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Highlights

A novel model order reduction technique for solving horizontal refraction equations in the
modeling of three-dimensional underwater acoustic propagation
Tengjiao He,Juan Liu,Shanjun Ye,Xin Qing,Shiqi Mo

• A model order reduction technique is designed to solve horizontal refraction equations.

• Only a few seconds are required for longitudinally invariant environments.

• The solution provided by the proposed model is naturally a wide-angle solution.

• The proposed model enables efficient and accurate solutions on a coarse grid.

• A full-order, benchmark model for solving horizontal refraction equations is developed.
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A B S T R A C T

Modeling three-dimensional (3D) underwater acoustic propagation is vital for underwater detec-
tion, localization, and navigation. This article introduces a novel model order reduction (MOR)
technique to solve horizontal refraction equations (HREs) in the modeling of 3D underwater
acoustic propagation. This approach relies on an adiabatic approximation of the 3D sound field,
representing the field as a combination of local vertical modes with their modal coefficients
governed by a system of two-dimensional (2D) HREs. Inspired by normal mode theory, the
coefficients in the expansion over vertical modes are determined by projecting them onto a
lower-dimensional, orthogonal space defined by their transverse eigenfunctions. By artificially
truncating the horizontal domain in the transverse directions using two perfectly matched layers
(PMLs), the eigenproblem associated with the transverse eigenfunctions of the modal coefficients
is closed and thus can be solved through a modal projection method. The modal projection
method enables fast computation of modal coefficients in a longitudinally invariant environment
within seconds, offering a naturally wide-angle solution covering ±90◦. The MOR method is
extended to encompass fully 3D cases by introducing an admittance matrix, a memory-saving
strategy that prevents numerical overflow when the longitudinal range is large. Moreover, the
fact that the outer boundaries of the PMLs are range-independent allows the proposed MOR
technique to perform well on a coarse grid when employing the Magnus scheme, significantly
saving the numerical cost for the fully 3D simulation. Numerical simulations are provided
for both longitudinally invariant and fully 3D scenarios, demonstrating the high accuracy and
efficiency of the proposed MOR technique in solving HREs.

1. Introduction
The modeling of 3D underwater acoustic propagation is essential for acoustic localization, navigation, and detection

under complex underwater conditions. Such modeling can provide crucial information about underwater acoustic
environments, potentially enhancing sonar performance. The pivotal component of this modeling is solving the 3D
Helmholtz equation, which is typically achieved through fully numerical methods on modern computer platforms. In
recent years, there has been growing interest in such approaches, which include the finite element method (FEM) [1],
the spectral element method [2, 3], the finite difference method (FDM) [4], the boundary element method (BEM) [5],
and the equivalent source method (ESM) [6]. These methods explicitly solve the 3D Helmholtz equation, introducing
only discretization as an approximation. Consequently, they provide a full-wave solution that simultaneously accounts
for high-order scattering, horizontal refraction and diffraction, and mode coupling effects. While these methods have
proven powerful for studying and benchmarking 3D propagation effects, their computational efficiency remains a
bottleneck, potentially limiting their applications due to limited computational resources.

However, a significant improvement in computational efficiency when solving the 3D Helmholtz equation can be
achieved by introducing some degree of approximation, as exemplified by the parabolic equation. The standard form
of the parabolic equation is derived through the paraxial approximation of the Helmholtz equation and simplifies the
problem by omitting back-scattering and assuming that the boundary and the medium along the propagation range
are slow-varying [7]. This simplification results in a one-way wave equation that evolves with distance. Pioneering
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Model order reduction for horizontal refraction equations

work on the 3D parabolic equation was conducted by Baer [8], and subsequent authors have advanced various aspects,
such as propagation angles, accuracy, and versatility in different coordinates [9, 10, 11, 12, 13]. With the support of
parallel computing, 3D parabolic equations have been employed to analyze global-scale T-phase wave propagation
[14, 15, 3, 16] and to interpret propagation effects in complex ocean environments, including canyons [17, 18, 19] and
regions around islands [20].

The solutions provided by the 3D parabolic equation accommodate both horizontal refraction and mode coupling
effects. The latter has proven to be of secondary importance in many practical cases [21, 22], particularly in
environments dominated by horizontal refraction, such as coastal wedges and underwater canyons. By representing the
3D sound field through modal decomposition and neglecting mode coupling effects, one can reduce the 3D Helmholtz
equation to an array of 2D Helmholtz-type equations governing the coefficients in the expansion over vertical modes.
The 2D Helmholtz-type equations are the so-called horizontal refraction equations (HREs). They can be solved using
ray theory [21], parabolic equations [23, 22], or analytical approaches with restrictions on simulated environments
[24, 25, 26]. Solving HREs is numerically more efficient than solving 3D parabolic equations, as they can be considered
a model order reduction (MOR) method [27, 22]. They represent the field in the vertical dimension as a combination of
orthogonal vertical modes, typically discretized into at least several hundred points by the 3D parabolic equation (much
larger than the number of vertical modes). The approaches described above for solving HREs involve approximations
that could potentially introduce additional unwanted errors into the solution. Therefore, one could argue for solving
HREs explicitly without introducing further approximations beyond the adiabatic (uncoupled) approximation into the
3D Helmholtz equation. One of the goals of this article is to develop such a method for exactly solving HREs.

In recent years, there has been significant interest in MOR techniques across the fields of computational mechanics,
fluid dynamics, and acoustics [28, 29, 30, 31, 32, 33]. These techniques have proven to be highly beneficial for
enhancing numerical efficiency without compromising accuracy. In acoustics, MOR has been effectively employed
to expedite a direct solver for linear equations in coupled FEM/BEM vibroacoustic formulations [34]. Similar methods
have also found application in addressing sound scattering through a reduced BEM formula [35, 36, 37]. The
fundamental principle of MOR involves spanning an orthogonal space with a set of basis functions onto which the
original system of equations is projected. The projection enables the original problem to be solved using a very small
system in the projection space so that the numerical efficacy can be improved significantly due to the reduced size. This
is akin to the application of HREs in 3D underwater acoustic propagation described earlier. Recent research suggests
that the concept of normal modes can be considered an early form of MOR [38].

Our second objective is to achieve MOR for the solution to HREs, inspired by normal mode theory. However, this
is challenging as normal modes are typically employed in bounded spaces (such as cavities or waveguides) [7], while
HREs are essentially 2D Helmholtz-type equations without boundary conditions in both the longitudinal and transverse
directions. To address this, we construct an orthogonal space using transverse eigenfunctions of modal coefficients.
These modal coefficients are then projected onto the space, allowing for a solution in a lower dimension with high
efficiency. Subsequently, the transverse directions are artificially truncated by two perfectly matched layers (PMLs)
[39] with actual outer boundaries, and the eigenproblem of the original open space for transverse eigenfunctions is
closed by applying a modal projection method [40, 41]. Our results demonstrate that the proposed MOR technique
for solving HREs requires only a few seconds of computational time when the environment is longitudinally invariant.
This represents a significant improvement, being a hundred times faster than state-of-the-art wide-angle mode parabolic
equation [22].

This article presents a novel MOR technique for solving HREs to model 3D underwater acoustic propagation. Our
model excludes mode coupling effects. Initially, we introduce modal decomposition to the 3D Helmholtz equation,
expressing the sound field as a combination of local vertical modes whose coefficients are governed by a set of
2D HREs. Inspired by normal mode theory, our proposed MOR technique determines the modal coefficients by
projecting them onto a lower-dimensional space spanned by their transverse eigenfunctions. We artificially truncate
the transverse directions using two PMLs to absorb outgoing waves and eliminate branch-cut contributions resulting
from the continuous spectrum. This closure of the eigenproblem associated with transverse eigenfunctions allows it to
be solved using a modal projection method [40, 41]. The modal projection method allows one to efficiently compute
the modal coefficients, especially in longitudinally invariant underwater environments. The efficiency of the modal
projection method arises from the variable separability of HREs in longitudinally invariant environments. Determining
the modal coefficients becomes highly efficient, as the eigenproblem for their transverse eigenfunction is solved only
once. Additionally, the solution provided by our proposed MOR is naturally wide-angle, covering horizontal angles
±90◦.
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To extend our MOR technique to fully 3D environments, we introduce an admittance matrix [42, 43, 44] that
converts an HRE with 2D inhomogeneous horizontal wavenumbers into a first-order evolution equation [45, 46].
This enables the solving of coupled transverse eigenfunctions of modal coefficients, circumventing the numerical
overflow associated with the global matrix method. Additionally, the fact that the outer boundaries of the PMLs
are range-independent enables the proposed MOR technique to excel with a coarse grid when utilizing the Magnus
scheme to solve the evolution equation, thus reducing numerical costs for fully 3D simulations. Numerical simulations
are performed that cover both longitudinally invariant and fully 3D scenarios, including coastal wedges, cosine
hills, and oceans over corrugated seafloors and realistic topography. The results validate the ability of the proposed
MOR technique to solve HREs and 3D underwater acoustic propagation and affirm its high efficiency, especially in
longitudinally invariant environments. This technique could be useful in various future applications, particularly for
modeling acoustic radiation or scattering from submerged objects and conducting time-domain simulations.

The remainder of this paper is organized as follows. Section 2 presents the equations characterizing the MOR
technique, including the governing equations of the 3D sound field and the formulation of the modal projection method
and the admittance matrix. Section 3 presents numerical simulations, including validation cases and analyses of the
suitability of the proposed model. Finally, conclusions are drawn in Section 4.

2. An exact solver for horizontal refraction equations based on model order reduction
As shown in Fig. 1, a standard ocean waveguide environment is analyzed, in which the medium density 𝜌(𝑧) is

assumed to depend solely on the depth 𝑧. The sound speed of the medium, denoted as 𝑐(𝑥, 𝑦, 𝑧), varies with the 3D
spatial coordinates (𝑥, 𝑦, 𝑧). The ocean surface is situated at 𝑧 = 0, and the interface between the water and seafloor
is defined as 𝑧 = 𝑧𝑠𝑓 (𝑥, 𝑦). Here, the governing equations for the 3D sound field are first reviewed, and a concise
derivation of the HREs is then presented by introducing the adiabatic approximation. Rather than pursuing a one-
way solution based on the parabolic equation, we explicitly solve for the HRE using a MOR technique, the core of
which relies on a modal projection method incorporating PMLs. While valid only for environments invariant along
the longitudinal direction, the modal projection method is highly efficient. This method is then extended to address
fully three-dimensional scenarios by introducing the concept of an admittance matrix. The solution provided by the
proposed approach is naturally wide-angle, covering horizontal angles of ±90◦.

Fluid seafloor

Sea surface z = 0

z = zsf(x, y)

z

y
xO

c(x, y, z) ρ(z) 

Incident wave

Figure 1: A schematic of the 3D underwater environment considered in the current analysis, showing the medium sound
speed as a function of the spatial coordinates (𝑥, 𝑦, 𝑧). The medium density depends only on the depth. The sea surface
is located on the 𝑧 = 0 plane, and the seafloor is described as 𝑧𝑠𝑓 (𝑥, 𝑦), i.e., by a fully 2D function.
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2.1. Governing equations
We start with the Helmholtz equation governing 3D underwater acoustic propagation [7]:

𝜕2𝑝
𝜕𝑥2

+
𝜕2𝑝
𝜕𝑦2

+ 𝜌(𝑧) 𝜕
𝜕𝑧

(
1

𝜌(𝑧)
𝜕𝑝
𝜕𝑧

)
+ 𝜔2

𝑐2(𝑥, 𝑦, 𝑧)
𝑝 = 0, (1)

where 𝜔 is the angular frequency, and, based on modal decomposition, the sound pressure 𝑝(𝑥, 𝑦, 𝑧) can be written as:

𝑝(𝑥, 𝑦, 𝑧) =
∑
𝑗
𝑅𝑗(𝑥, 𝑦)𝑃𝑗(𝑥, 𝑦, 𝑧), (2)

where 𝑗 specifies the vertical mode number, 𝑅𝑗(𝑥, 𝑦) are the modal coefficients, and the orthogonal, vertical modes
𝑃𝑗(𝑥, 𝑦, 𝑧) satisfy the local water/seafloor continuity conditions at 𝑧 = 𝑧𝑠𝑓 (𝑥, 𝑦) and the pressure-release condition at
𝑧 = 0:

⎧⎪⎪⎨⎪⎪⎩
𝑃𝑗(𝑥, 𝑦, 𝑧)

||||𝑧=0 = 0,

1
𝜌(𝑧)

d𝑃𝑗(𝑥, 𝑦, 𝑧)
d𝑧

||||𝑧=𝑧−𝑠𝑓 = 1
𝜌(𝑧)

d𝑃𝑗(𝑥, 𝑦, 𝑧)
d𝑧

||||𝑧=𝑧+𝑠𝑓 .
(3)

Substituting Eq. (2) back into Eq. (1) and ensuring the orthogonality of the local vertical mode:

∫ (⋅)
𝑃ℎ(𝑥, 𝑦, 𝑧)

𝜌(𝑧)
d𝑧, (4)

this yields

𝜕2𝑅𝑗

𝜕𝑥2
+

𝜕2𝑅𝑗

𝜕𝑦2
+ 𝑘2𝑟𝑗(𝑥, 𝑦)𝑅𝑗 +

∑
ℎ 𝐴ℎ,𝑗𝑅ℎ + 2

∑
ℎ 𝐵ℎ,𝑗

𝜕𝑅ℎ
𝜕𝑥

+ 2
∑

ℎ 𝐶ℎ,𝑗
𝜕𝑅ℎ
𝜕𝑦

= 0, (5)

where 𝐴ℎ,𝑗 , 𝐵ℎ,𝑗 , and 𝐶ℎ,𝑗 are the coupling matrices, the detailed expressions for which can be found in [7, 47].
In the above equation, 𝑘𝑟𝑗 are the horizontal modal wavenumbers. Dropping the coupling terms gives the adiabatic
approximation of the coupled equation in Eq. (5), and the so-called HRE is finally derived:

𝜕2𝑅𝑗

𝜕𝑥2
+

𝜕2𝑅𝑗

𝜕𝑦2
+ 𝑘2𝑟𝑗(𝑥, 𝑦)𝑅𝑗 = 0. (6)

Clearly, the modal coefficients are governed by the uncoupled 2D Helmholtz-type equation, as expressed in
Eq. (6). These 2D Helmholtz-type equations, previously examined through ray theory and the parabolic equation,
fundamentally depict modal coefficients within the unbounded horizontal domain. The horizontal wavenumber 𝑘𝑟𝑗
determines the effective index of refraction.

2.2. Model order reduction
We introduce a MOR based on normal mode theory to solve the 2D Helmholtz-type equations in Eq. (6). This

involves a transverse modal decomposition of the coefficients 𝑅𝑗(𝑥, 𝑦), which is described by:

𝑅𝑗(𝑥, 𝑦) =
∞∑

n=1
𝑆𝑛
𝑗 (𝑥)𝜙

𝑛
𝑗 (𝑦), (7)
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where 𝜙𝑛
𝑗 (𝑦) represents the transverse eigenfunctions of 𝑅𝑗(𝑥, 𝑦) and 𝑆𝑛

𝑗 (𝑥) denotes their coefficients. The superscript 𝑛
indicates the order of the transverse eigenfunctions. In essence, the transverse eigenfunctions of 𝑅𝑗(𝑥, 𝑦) span a lower-
dimensional, orthogonal space onto which the 𝑅𝑗(𝑥, 𝑦) are projected. Consequently, the original model, characterized
by discretization points along the transverse direction, is reduced to a lower-dimensional model in terms of the
transverse eigenfunctions 𝜙𝑛

𝑗 (𝑦). Typically, the number of discretization points along the transverse direction is much
larger than the number of transverse eigenfunctions. Therefore, Eq. (7) is essentially a form of MOR based on normal
mode theory. By reducing the model order of the modal coefficients, the 3D sound pressure can be written as a double
summation

𝑝(𝑥, 𝑦, 𝑧) =
∑
𝑗

∑
n

𝑆𝑛
𝑗 (𝑥)𝜙

𝑛
𝑗 (𝑦)𝑃𝑗(𝑥, 𝑦, 𝑧). (8)

However, Eq. (7) is a general normal-mode expression that is usually suitable for a bounded space. For 3D
underwater acoustic propagation, the horizontal domain is unbounded. Therefore, the strategy here is to artificially
truncate the infinite space along the transverse directions using two PMLs with physical outer boundaries. By doing
this, the eigenproblem associated with 𝜙𝑛

𝑗 (𝑦) can be solved using a method of modal projection. Furthermore, the
contribution of branch cuts arising from the infinite space is automatically eliminated by introducing two actual
boundaries.

2.3. A modal projection method for longitudinally invariant environments

y = 0

y = D

y = d

y = D-d

PML

PML

x
y

Incident wave

Transverse basis modes

krj (x, y) 

Figure 2: A schematic of the horizontal computation domain, with its transverse directions truncated by two PMLs. The
2D domain represents the horizontal plane of modal coefficients 𝑅𝑗(𝑥, 𝑦), with the medium inhomogeneity characterized
by the effective index of refraction 𝑘𝑟𝑗(𝑥, 𝑦). The transverse basis modes are visualized by the red lines, which are used to
span a lower-dimensional projection space for the higher dimensional variables 𝑅𝑗(𝑥, 𝑦).

In this context, we begin by simplifying the problem, assuming longitudinal invariance in the environment. This
implies that the waveguide geometries and medium properties (𝑘𝑟𝑗) remain constant along the longitudinal direction.
This simplification leads to the separation of variables in Eq. (6), indicating that the transverse eigenfunctions
𝜙𝑛
𝑗 (𝑦) become uncoupled. Considering a monopole point source as an excitation, the coefficients of the transverse

eigenfunctions 𝑆𝑛
𝑗 (𝑥) are reduced to be range-independent:

𝑆𝑛
𝑗 (𝑥) =

i
2
𝜙𝑛
𝑗 (𝑦𝑠)

ei𝑘𝑛𝑥𝑗𝑥𝑠

𝑘𝑛𝑥𝑗
, (9)

where 𝑘𝑛𝑥𝑗 are the transverse eigenvalues and (𝑥𝑠, 𝑦𝑠) is the horizontal coordinate of the source.
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The aforementioned variable separation presupposes the invariance of the waveguide environment along the 𝑥-axis,
resulting in 𝑘𝑟𝑗 being solely a function of 𝑦. By substituting Eq. (7) back into Eq. (6), the eigenequation for 𝜙𝑛

𝑗 (𝑦) can
be derived:

d2𝜙𝑛
𝑗

d𝑦2
+ 𝑘2𝑟𝑗(𝑦)𝜙

𝑛
𝑗 = 𝑘𝑛𝑥𝑗

2𝜙𝑛
𝑗 . (10)

It is now evident that the longitudinal invariance simplifies the original 2D problem of determining 𝑅𝑗(𝑥, 𝑦) into
a one-dimensional eigenproblem linked to 𝜙𝑛

𝑗 . Consequently, there is potential for a significant enhancement of the
computational efficiency. The next step involves solving the eigenproblem through a modal projection method.

We now consider an infinite domain, as illustrated in Fig. 2, where the transverse direction is truncated by two
PMLs. We define the outer boundaries of the upper and lower PMLs as 𝑦 = 0 and 𝑦 = 𝐷, respectively, and these
boundaries are characterized by the Dirichlet conditions. Each PML has a thickness of 𝑑. By choosing basis modes
that meet the boundary conditions at 𝑦 = 0 and 𝑦 = 𝐷, the transverse eigenfunctions 𝜙𝑛

𝑗 (𝑦) are projected onto a series
of transverse basis functions:

⎧⎪⎨⎪⎩
𝜙𝑛
𝑗 (𝑦) =

∑𝑁
m=1 𝑤

𝑚,𝑛
𝑗 𝜓𝑚

𝑗 (𝑦) = 𝚿𝐰𝑇 ,

𝜓𝑚
𝑗 (𝑦) =

√
2
𝐷

sin
[𝑚𝜋
𝐷

𝑦
]
.

(11)

where 𝜓𝑚
𝑗 denotes the transverse basis modes within the region bounded by the outer boundaries of the two PMLs,

as indicated by the red lines in Fig. 2. The projection coefficients are denoted by 𝑤𝑚,𝑛
𝑗 . The row vectors 𝚿 and 𝐰

represent 1 ×𝑁 vectors of the transverse basis modes and projection coefficients, respectively. The variables 𝑁 and
the superscript m signify the total number and order of the transverse basis modes, respectively. Multiplying Eq. (10)
by 𝚿𝑇 and integrating the resulting weighted eigenequation over the interval 0 ≤ 𝑦 ≤ 𝐷 gives:

∫
𝐷

0
𝚿𝑇

[d2𝜙𝑛
𝑗

d𝑦2
+ 𝑘2𝑟𝑗(𝑦)𝜙

𝑛
𝑗

]
d�̂� = 𝑘𝑛𝑥𝑗

2 ∫
𝐷

0
𝚿𝑇𝜙𝑛

𝑗d�̂�. (12)

where �̂� is the complex coordinate stretching induced by the PML, which is mathematically expressed as [39]:

�̂� = 𝑦 + i
𝑘𝑟𝑗 ∫

𝑦

0
𝜎(𝜀)d𝜀, (13)

where 𝜎(𝜀) is the damping function and 𝜀 is the dimensionless coordinate. For the upper PML, 𝜀 = (𝑑 − 𝑦)∕𝑑, and
for the lower PML, 𝜀 = (𝑦 − 𝐷 + 𝑑)∕𝑑. Here, a second-degree polynomial damping function is used, expressed
mathematically as 𝜎(𝜀) = 𝜁𝜀2 [48, 49], where 𝜁 is a positive real damping coefficient that controls the rate of damping.
From Eq. (13), we obtain

d
d�̂�

= 1
𝑠(𝑦)

d
d𝑦

,

d�̂� = 𝑠(𝑦)d𝑦,
(14)

where

𝑠(𝑦) = 1, 𝑑 < 𝑦 < 𝐷 − 𝑑,
𝑠(𝑦) = 1 + i𝜎(𝑦), otherwise. (15)

Next, we consider the projection defined by Eq. (11) and substitute Eq. (11) into Eq. (12). After performing
integration by parts to reduce the second-order derivatives to first-order derivatives, we obtain the matrix equation

[𝚪 +𝚷]𝐖 = 𝑘𝑛𝑥𝑗
2𝚼𝐖, (16)
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where 𝐖 is an 𝑁 ×𝑁 transverse projection coefficient matrix, and 𝚪, 𝚷, and 𝚼 are

𝚪 = ∫ 𝐷
0 − 1

𝑠(𝑦)
𝜕𝚿𝑇

𝜕𝑦
𝜕𝚿
𝜕𝑦

d𝑦,

𝚷 = ∫ 𝐷
0 𝑘2𝑟𝑗𝑠(𝑦)𝚿

𝑇𝚿d𝑦,
𝚼 = ∫ 𝐷

0 𝑠(𝑦)𝚿𝑇𝚿d𝑦.

(17)

Analytical expressions can be derived for the integrals containing the derivatives in 𝚪 and the first-order term in
𝚼. However, 𝚷 must be integrated numerically. The numerical scheme follows the Clenshaw–Curtis quadrature rules
[50, 51, 40], which provide excellent convergence using relatively few transverse samplings; generally, five points per
period of the basis modes are sufficient to ensure good convergence [40]. A generalized matrix eigenvalue problem
can be obtained by rearranging Eq. (16) as follows:

𝐊𝐖 = 𝑘𝑛𝑥𝑗
2𝐖, (18)

with 𝐊 = 𝚼−1(𝚪 + 𝚷). The generalized matrix eigenvalue problem described above can be readily solved using
the built-in MATLAB (MathWorks, Natick, MA, USA) function ’𝑒𝑖𝑔(𝐊)’ once 𝐊 is calculated and assembled. It is
noteworthy that 𝑘𝑟𝑗 must be pre-calculated and treated as a known refractive index in a set of HREs given in Eq. (6).

After solving the above eigenvalue problem, the eigenvalues must be sorted in order. Their eigenvectors represent
the projection coefficients. The transverse eigenfunctions 𝜙𝑛

𝑗 (𝑦) are reconstructed using the transverse projection
defined in Eq. (11), and the modal coefficients 𝑅𝑗(𝑥, 𝑦) can be calculated using Eqs. (7) and (9). It’s important to
highlight that projecting 𝜙𝑛

𝑗 onto the space defined by 𝜓𝑚
𝑗 enables the conversion of the original eigenproblem linked

with 𝑘𝑛𝑥𝑗 into a generalized matrix eigenproblem, simplifying its solution through eigenvalue decomposition of 𝐊.
The dependence on 𝑘𝑟𝑗 is evident in the generalized matrix eigenvalue problem, where the sub-matrix block,

computed using Eq. (17), is explicitly a function of 𝑘𝑟𝑗 . Essentially, the variable-separated wave equation given by
Eq. (10) generates distinct generalized matrix eigenvalue problems for various horizontal wavenumbers 𝑘𝑟𝑗 . As a result,
this process determines different 𝑅𝑗(𝑥, 𝑦) corresponding to 𝑘𝑟𝑗 for different orders of vertical modes. Subsequently,
the computation of the 3D horizontal sound field is performed using Eq. (2) once all orders of 𝑅𝑗(𝑥, 𝑦) are obtained.

The preceding derivation highlights that the proposed MOR technique, coupled with the assumption of longitudinal
invariance, facilitates the simultaneous computation of 𝑅𝑗(𝑥, 𝑦) for various 𝑥 and 𝑦 coordinates once the eigenproblem
of the transverse eigenfunctions 𝜙𝑛

𝑗 (𝑦) in Eq. (10) is resolved. This characteristic fundamentally bypasses the
evolutionary procedure typically associated with the 𝑥-direction in the standard parabolic equation. Consequently,
the proposed MOR technique proves highly efficient when the environment exhibits invariance along the longitudinal
direction. Despite the restriction on range independence along the longitudinal direction, we expand the MOR technique
to address fully 3D scenarios in the following section.

2.4. An admittance matrix for fully three-dimensional environments
In reality, the underwater environment is more complex than the longitudinally invariant scenario discussed in the

preceding section and can exhibit various 3D characteristics. To handle fully 3D environments effectively, we enhance
the MOR method by introducing an admittance matrix. This matrix essentially aligns with the Dirichlet-to-Neumann
(DtN) operator, signifying the radiation condition in the transverse modal domain. A Riccati equation typically governs
the admittance matrix, providing an efficient and stable numerical solution to the fully 2D Helmholtz-type equation in
Eq. (6).

The starting point is to write Eq. (6) as a first-order evolution equation along the longitudinal direction 𝑥 [42]:

𝜕
𝜕𝑥

[
𝑅𝑗
𝑅′
𝑗

]
=
[

0 1
−(𝜕2𝑦 + 𝑘2𝑟𝑗) 0

] [
𝑅𝑗
𝑅′
𝑗

]
, (19)

where 𝜕2𝑦 = 𝜕2

𝜕𝑦2 and 𝑅′
𝑗 denotes the partial derivative of 𝑅𝑗 along 𝑥. The transverse basis modes are then used to project

𝑅𝑗 and 𝑅′
𝑗 directly, yielding:

{
𝑅𝑗(𝑥, 𝑦) =

∑𝑁
m=1 𝑎

𝑚
𝑗 (𝑥)𝜓

𝑚
𝑗 (𝑦),

𝑅′
𝑗(𝑥, 𝑦) =

∑𝑁
m=1 𝑏

𝑚
𝑗 (𝑥)𝜓

𝑚
𝑗 (𝑦),

(20)
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Step1: Step2: storing

indexing

E1+E2Yj(x)
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xL-2

xL-1

xL

Figure 3: A flow chart of the evolutionary Magnus scheme for solving the coupled transverse modal coefficients 𝐚𝑗(𝑥)
when the range dependence of 𝑘𝑟𝑗 is introduced. This first involves a back-propagator step to compute the admittance
matrices with an initial condition of 𝐘𝑗(𝑥𝐿) = i

√
𝐊, starting from 𝑥𝐿 to 𝑥0 where the source condition is imposed. During

this process, the product of 𝐄1 + 𝐄2𝐘𝑗(𝑥) is stored at each evolutionary step. The second step uses the stored matrices to
forward propagate the coupled transverse modal coefficients 𝐚𝑗(𝑥) from 𝑥1 to the end of the 2D computation domain at
𝑥𝐿, such that the 𝐚𝑗(𝑥) at each 𝑥 are obtained.

where 𝑎𝑚𝑗 and 𝑏𝑚𝑗 represent the coefficients of the 𝑚th-order transverse basis mode for 𝑅𝑗 and 𝑅′
𝑗 , respectively.

Notably, given the range independence of the boundaries at 𝑦 = 0 and 𝑦 = 𝐷, the transverse basis modes 𝜓𝑚
𝑗 (𝑦)

in Eq. (20) are identical to those in Eq. (11), and they do not depend on 𝑥. Expressing Eq. (20) in matrix form and
subsequently substituting it into Eq. (19) results in

𝜕
𝜕𝑥

[
𝐚𝑗(𝑥)𝑇
𝐛𝑗(𝑥)𝑇

]
=
[

𝟎 𝐈
−𝐊 𝟎

] [
𝐚𝑗(𝑥)𝑇
𝐛𝑗(𝑥)𝑇

]
, (21)

where the matrix 𝐊 is the same as that in Eq. (18).
Considering numerical stability, we cannot directly treat the coupled equations for transverse basis modes in

Eq. (21) as an initial problem. Instead, we introduce an admittance matrix represented as

𝐛𝑗 = 𝐘𝑗𝐚𝑗 . (22)

One can then obtain the governing Riccati equation:

𝜕𝐘𝑗

𝜕𝑥
= −𝐊 − 𝐘2

𝑗 . (23)

The solution to Eq. (21) is computed through a two-step procedure: a) Eq. (23) is numerically integrated from
𝑥 = 𝑥𝐿, where the longitudinal range is truncated, using an initial value of 𝐘𝑗(𝑥𝐿) = i

√
𝐊, to 𝑥 = 𝑥0, where the source

condition is imposed. b) The range-dependent transverse basis modal coefficients 𝐚𝑗(𝑥) are calculated by providing an
initial source condition at 𝑥 = 𝑥0:

𝜕𝐚𝑗
𝜕𝑥

= 𝐘𝑗𝐚𝑗 . (24)

Here, we employ the Magnus-Möbius scheme [45, 46] to numerically compute Eqs. (23) and (24). The form
of these two equations is similar to the so-called invariant embedding equations[52, 53, 54]. For clarity, we provide
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details of the second-order Magnus scheme below, which is consistently applied in this article. Further details regarding
higher-order Magnus schemes can be found in the work of Iserles et al. [55]. We assume a uniform discretization of
the longitudinal range with a step size of Δ𝑥 = 𝑥1 − 𝑥0 > 0. Utilizing the second-order Magnus scheme, Eq. (21) can
be expressed in a numerical discretized form:

[
𝐚𝑗(𝑥 − Δ𝑥)𝑇
𝐛𝑗(𝑥 − Δ𝑥)𝑇

]
= 𝑒−Δ𝑥𝐇[𝑥−(Δ𝑥∕2)]

[
𝐚𝑗(𝑥)𝑇
𝐛𝑗(𝑥)𝑇

]
, (25)

with

𝐇 =
[

𝟎 𝐈
−𝐊 𝟎

]
. (26)

The exponential propagator is decomposed into

e−Δ𝑥𝐇[𝑥−(Δ𝑥∕2)] =
[

𝐄1 𝐄2
𝐄3 𝐄4

]
. (27)

The Riccati equation for 𝐘𝑗 is eventually solved following the Magnus scheme, yielding:

𝐘𝑗(𝑥 − Δ𝑥) = [𝐄3 + 𝐄4𝐘𝑗(𝑥)][𝐄1 + 𝐄2𝐘𝑗(𝑥)]−1, (28)

and the range-dependent, transverse basis modal coefficients 𝐚𝑗(𝑥) can be solved using a forward evolutionary
procedure:

𝐚𝑗(𝑥) = 𝐌𝑗(𝑥)−1𝐚𝑗(𝑥 − Δ𝑥), (29)

with 𝐌𝑗(𝑥) = 𝐄1 + 𝐄2𝐘𝑗(𝑥).
Following the computation of the transverse basis modal coefficients 𝐚𝑗(𝑥), 𝑅𝑗(𝑥, 𝑦) can be determined using

Eq. (20) with an initial value of 𝐚0(𝑥) = 2𝜋
[
exp

(
i
√
𝐊𝑥𝑠

)
∕i
√
𝐊
]
𝚿(𝑦𝑠). As the coupled equations in Eq. (21) are

solved through an evolutionary procedure, the risk of numerical overflow is mitigated. Figure 3 provides a visual
representation of the evolutionary procedure. Notably, at each step of the evolutionary procedure, only the matrix −𝐊
requires recomputation and updating. This is attributed to the independence of the outer boundaries of the artificially
truncated domain. Consequently, only the product of 𝐄1 + 𝐄2𝐘𝑗(𝑥) (or its inverse) must be stored throughout the
entire evolutionary procedure, allowing the overwriting of other matrices. This practice conserves RAM and enhances
computational efficiency.

Furthermore, the admittance matrix achieves superior convergence to the classical step-wise approximation. In
the Magnus scheme, it’s typically advised to keep the step size, represented by Δ𝑥, smaller than half the wavelength
(𝜆). This guideline is effective when utilizing the admittance matrix to solve sound propagation in waveguides with
varying cross-sections [56]. However, in our study, the outer boundary of the PMLs remains constant along the 𝑥-axis.
Consequently, the sole factor causing scattering is the inhomogeneity in 𝑘𝑟𝑗(𝑥, 𝑦), which can be viewed as a slowly
varying function with respect to 𝑥. Hence, our proposed model can perform admirably even with a coarser grid. We
provide comparisons of the sound field computed across different grids along the 𝑥-axis in Section 3.3.1, affirming this
characteristic of the proposed MOR technique.

3. Numerical simulations
This section presents the results of the numerical simulations. Four test cases are divided into two groups, each

intended to validate the proposed MOR technique for either longitudinally invariant environments or fully three-
dimensional environments. Initially, the Acoustical Society of America (ASA) benchmark wedge [10] is simulated
with longitudinal invariance, where horizontal refraction dominates. This scenario serves as a suitable benchmark for
evaluating the proposed MOR technique’s efficacy in solving HREs without modal coupling. The second example
involves the infinite cosine hill, where both modal coupling and horizontal refraction are significant, elucidating how
the proposed model performs when the adiabatic assumption is violated. Transitioning to fully three-dimensional
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environments, two cases are examined. Firstly, the corrugated seafloor case demonstrates the proposed model’s
effectiveness in environments where modal coupling is weak. Subsequently, the sandbar scenario, incorporating
realistic topography data, explores the model’s applicability in environments where modal coupling may occur locally.

The simulations were implemented using MATLAB installed on a laptop with an Intel Core i9-13900K CPU (Intel,
Santa Clara, CA, USA) and 128 GB RAM. A point source with unit amplitude was considered in all simulations,
which were conducted for a two-layer fluid shallow-water environment with a constant water sound speed of 1500
m/s. Consequently, the local vertical modes 𝑃𝑗(𝑥, 𝑦, 𝑧) for the Pekris waveguide could be computed analytically, and
their corresponding horizontal wavenumbers were determined using a root finder based on Newton–Raphson iteration
[57]. For detailed information on the root finder, please refer to Appendix A.1. It’s important to note that when dealing
with refractive water, alternative numerical tools are required to solve waterborne modes and their eigenvalues, such
as KRAKEN [58] and ORCA [59]. Although all the simulations assumed an iso-velocity water column, the proposed
model can adapt to sound speed inhomogeneity in both the vertical and horizontal directions once the local vertical
modes and their horizontal wavenumbers are established for refractive water. It is imperative to consider the presence
of vertical leaky modes in all simulations, as they make a substantial contribution to the near field. To enhance accuracy
across all ranges, we incorporate these vertical leaky modes into the wave solution. Vertical leaky modes typically refer
to those with high mode orders, resulting in high attenuation and exponential decay within the water column as they
escape into the sediment. Thus, for the purpose of this study, vertical leaky modes are operationally defined as those
propagating over short distances with mode orders higher than those capable of long-range propagation.

In these simulations, computational efficiency and accuracy should be guaranteed by setting appropriate transverse
basis mode number 𝑁 , PML damping coefficient 𝜁 , and PML thickness 𝑑. Selecting an appropriate thickness for the
PML is often highly contingent on the specific problem at hand and is not always straightforward. Ideally, the PML
should possess adequate thickness to facilitate significant coordinate stretching, ensuring exponential decay of the wave
solution within it. While increasing PML thickness undoubtedly enhances attenuation of outgoing waves, it invariably
escalates computational costs. Striking a balance between accuracy and efficiency, a PML thickness of 5𝜆 proved
effective in our simulations and was consequently adopted for subsequent analyses. The following part first discuss the
parameter selection for the proposed MOR technique. The suggested parameters are then used for presenting all the
numerical simulations throughout this article.

3.1. Parameter selection
The subsequent analysis addresses parameter selection for the proposed MOR technique. This entails examining

error convergence concerning an analytical solution. The chosen analytical solution is the sound field in a Pekeris
waveguide:

𝑝𝑎𝑛𝑎𝑦(𝑥, 𝑦, 𝑧) =
∑
𝑗
𝐿−2
𝑗 sin(𝑘𝑧𝑗𝑧𝑠) sin(𝑘𝑧𝑗𝑧)𝐻1

0 (𝑘𝑟𝑗|𝐫 − 𝐫𝐬|), (30)

where 𝑘𝑧𝑗 =
√

𝑘2 − 𝑘2𝑟𝑗 , 𝐫𝐬 = (𝑥𝑠, 𝑦𝑠) denotes the source’s horizontal position vector, 𝐫 = (𝑥, 𝑦) signifies the horizontal
position vector of field points, and𝐿−2

𝑗 are the normalized coefficients whose expression can be found in Appendix A.1.
The analysis frequency is 125 Hz, corresponding to the upper frequency limit of the numerical simulations in this study.
The water depth is set at 200 m. Seabed parameters are adopted from Case 1 in Table 1. A horizontal domain of 20 km
× 4 km size is utilized for computation, with a receiver depth of 150 m. The source is positioned at (0 km, 2 km, 100
m). To assess the convergence of the proposed MOR technique, we introduce relative errors:

Relative Errors =
∫ |𝑝𝑎𝑛𝑎𝑦 − 𝑝|2d𝑥d𝑦

∫ |𝑝𝑎𝑛𝑎𝑦|2d𝑥d𝑦
, (31)

where d𝑥 = Δ𝑥 = 𝜆∕5 and d𝑦 = Δ𝑦 = 𝜆∕5. In the subsequent discussion on parameter selection, default values of
𝑁 , 𝜁 , and 𝑑 are 3𝐷𝑓∕𝑐𝑝𝑗 , 1, and 5𝜆, respectively, unless specified otherwise. Here, 𝑐𝑝𝑗 represents the modal phase
velocity of the 𝑗th vertical mode.

3.1.1. Total number of transverse basis modes
Figure 4 illustrates the relative errors plotted against the ratio of 𝑁 to 𝑁𝑐 = 𝐷𝑓∕𝑐𝑝𝑗 . The relative errors exhibit

a gradual decrease following 1∕𝑁0.5 when 𝑁 < 2𝑁𝑐 , beyond which they diminish more rapidly following about
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1∕𝑁5. Once 𝑁 > 2.5𝑁𝑐 , the relative errors converge to approximately 0.6%. In the modal projection method, the
modal coefficients are determined by truncating the horizontal infinite space with two PMLs, encompassing both the
continuous spectrum and the discrete spectrum. The latter comprises transverse basis modes with mode orders less
than 𝑛 < 2𝑁𝑐 for a bounded space [7]. However, when dealing with the truncated infinite space, the discrete spectrum
alone is insufficient, necessitating the inclusion of transverse leaky modes, which contribute solely to the near field
or escape into the infinite space, to accurately approximate the continuous spectrum. Notably, for a bounded space,
high-order modes, representing the so-called evanescent modes, may be excited after 𝑛 > 2𝑁𝑐 , exhibiting attenuating
behavior that aligns with the absorption of reflections from outer boundaries (leaky energy). Considering the escalating
numerical cost with increasing 𝑁 , and observing that 𝑁 = 3𝑁𝑐 yields satisfactory accuracy with errors marginally
exceeding 1%, we adopt this value for subsequent simulations.
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Figure 4: Relative error curve as a function of 𝑁∕𝑁𝑐 at 125 Hz. The results are shown for the Pekeris waveguide.

3.1.2. PML damping coefficient
To ascertain the optimal damping coefficient 𝜁 , Figure 5 illustrates the relative errors plotted against 𝜁 . Additionally,

the error curve at 25 Hz is provided to illustrate the attenuation rate’s frequency dependency in the PMLs, which is
mitigated by incorporating the horizontal wavenumber 𝑘𝑟𝑗 in Eq.(13). Initially, errors decrease with increasing 𝜁 ,
aligning with the polynomial damping functions’ capability to mitigate spurious reflections from the PMLs’ outer
boundary through enlarging the damping coefficients. Once reaching their minima, errors stabilize before gradually
increasing. This increase in errors can be attributed to excessive stretching induced by overlarge damping coefficients.
Both error curves at the two frequencies reach their minima within the 𝜁 range of 0.5 to 5, affirming that considering
𝑘𝑟𝑗 in Eq.(13) effectively mitigates the frequency dependency of the attenuation rate in PML. This analysis suggests
that robust results can be achieved with 𝜁 = 1, and we adopt this value for subsequent simulations.

3.2. Longitudinally invariant environments
3.2.1. Case 1: ASA wedge

The first case is the ASA benchmark wedge, whose topography is described by:

𝑧𝑠𝑓 (𝑥, 𝑦) = 200 + 0.05(𝑦 − 𝑦𝑠). (32)

The seabed parameters are provided in Table 1. The seabed slope of the ASA benchmark wedge measures
approximately 2.86◦, resulting in noticeable horizontal refraction along the 𝑥-axis. Consequently, the ASA benchmark
wedge is commonly utilized to evaluate 3D propagation effects, making it an appropriate case for benchmarking the
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Figure 5: Relative error curve as a function of 𝜁 at 25 Hz and 125 Hz. The results are shown for the Pekeris waveguide.

Table 1
Parameters of the longitudinally invariant shallow-water environment in the simulations.

Parameter Case 1: ASA wedge Case 2: Infinite cosine hill
Computational frequency 25 Hz 100 Hz

Computational domain size 25 km × 8 km × 400 m 20 km × 8 km × 60 m
Seabed sound speed 1700 m/s 1767 m/s

Seabed sound attenuation 0.5 dB/𝜆 0.75 dB/𝜆
Seabed density 1500 kg/m3 1845 kg/m3

Numbers of vertical modes 8 6
Computation time 1.2 s 14 s

proposed MOR technique, which neglects mode interactions. The point source is positioned at (0 km, 4 km, 100 m)
with a frequency of 25 Hz. Eight vertical modes are considered in the computation. Figure 6 provides a schematic of
the simulation setup.

Figure 7 illustrates the sound propagation in the horizontal plane at 𝑧 = 30 m and shows noticeable horizontal
refraction along the 𝑥-axis. In addition, Fig. 8 shows the coefficients of the first five vertical modes. Higher modes
exhibit more significant horizontal refraction, a phenomenon consistent with the observations summarized by Jensen
et al. [7]. With each interaction with the seabed, acoustic rays are deflected slightly away from the apex, forming an
energy path that curves upslope and ultimately propagates downslope. Steeper rays, corresponding to higher modes,
undergo more bottom reflections and are turned around faster than shallow-angle rays, which represent lower-order
modes.

To quantitatively validate the proposed MOR technique, the transmission loss (TL) is compared with that computed
by the state-of-the-art wide-angle mode parabolic equation [22] and a longitudinally invariant finite element model [1].
Figure 9 shows excellent agreement with the other two models for the TL plotted as a function of 𝑥 along 𝑦 = 𝑦𝑠 at a
receiver depth of 30 m, thereby validating the proposed model for 3D propagation effects in coastal wedges. It is worth
mentioning that the average running time for the proposed MOR is about 1.2 s, significantly faster than the 1 h and
30 mins taken by the longitudinally invariant finite element model. Even when compared with the wide-angle mode
parabolic equation, the proposed MOR model is still over a hundred times faster. This demonstrates that the proposed
model is highly efficient for sound propagation in longitudinally invariant environments.
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Figure 6: A schematic of the simulation setup for the ASA benchmark wedge, with the 𝑦-axis aligned along the bottom
slope.

Figure 7: TL contours in the coastal wedge with a receiver depth of 𝑧 = 30 m at 25 Hz.

3.2.2. Case 2: Infinite cosine hill
The final case featuring longitudinal invariance is the infinite cosine hill, depicted in Fig. 10. Compared to the

previous case, the infinite cosine hill can induce both strong horizontal refraction and mode coupling, making it suitable
for studying mode interactions and evaluating the proposed model’s suitability. In this case, the cosine hill is described
by:

𝑧𝑠𝑓 (𝑥, 𝑦) =

{
47.5 − 12.5 cos

2𝜋𝑦
500

, 2750 < 𝑦 − 𝑦𝑠 < 3250,
60, otherwise.

(33)

Table 1 summarizes the seabed parameters for this case. The source position is (0 km, 2 km, 20 m), and the source
frequency is 100 Hz, at which four trapped modes plus two vertical leaky modes are taken into account. Figure 11
compares the results obtained using the proposed MOR technique and the longitudinally invariant finite element model
in the 𝑧 = 20 m plane, revealing visible differences when 𝑦 exceeds 5 km. In this region, the longitudinally invariant
finite element model shows apparent fluctuations in its interference pattern due to mode coupling effects, whereas the
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Figure 8: Modal coefficients of the first five vertical modes in the 𝑧 = 30 m horizontal plane at 25 Hz. The results are
shown for the coastal wedge case.
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Figure 9: The TL compared with those from the wide-angle mode parabolic equation (the dashed red line) and longitudinally
invariant finite element models (the solid blue line) in the 𝑦 = 𝑦𝑠 plane at a receiver depth of 𝑧 = 30 m. The results are
shown for the coastal wedge case.

proposed model predicts relatively smooth results. Nevertheless, both models demonstrate consistent overall energy
distributions. Specifically, the horizontal refraction by the infinite hill beyond 𝑥 exceeding 12 km is accurately captured
by both models.

Figure 12 presents the coefficients of the first five vertical modes at a receiver depth of 20 m. Modes 2 and 3
demonstrate significant horizontal refraction by the infinite cosine hill, resulting in a shadow zone over the hill beyond
𝑦 > 5 km and 𝑥 > 11 km. In the same region where the shadow zone occurs, mode 1 shows an apparent acoustic
energy distribution, contributing to the horizontal diffraction zone observed in the sound field depicted in Fig. 11.
Additionally, mode 4 is completely cut off by the cosine hill and cannot propagate beyond 𝑦 > 5 km.

Figure 13 compares the TL along the 𝑦 = 4 km and 𝑦 = 7 km axes at a receiver depth of 20 m. At 𝑦 = 7 km, the
proposed model generally underestimates the TL over short ranges but aligns well with the longitudinally invariant
finite element model in terms of its overall trend. Specifically, for regions where the horizontal refraction is significant
(𝑦 = 4 km axis), the proposed model yields nearly identical results to the longitudinally invariant finite element
model. The errors between the two models, depicted at the bottom of Figure 11, align with this observation, revealing
significant discrepancies of up to 10 dB in regions across the hill and where troughs in the sound field are evident.
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Figure 10: A schematic of the simulation setup in the case of a cosine hill.

Figure 11: The TL contours in the ocean overlaying the infinite cosine hill with a receiver depth of 𝑧 = 20 m at 100 Hz,
calculated using the longitudinally invariant finite element model (a) and the proposed method (b).
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Figure 12: Modal coefficients the first five vertical modes in the 𝑧 = 20 m horizontal plane at 100 Hz. The results are
given for the infinite cosine hill case.

(a)  y = 4 km (b)  y = 7km

Figure 13: A TL comparison with the longitudinally invariant finite element model (the solid blue line) in the 𝑦 = 4 km
(a) and 𝑦 = 7 km (b) planes at a receiver depth of 𝑧 = 20 m. The results are given for the infinite cosine hill case.

This suggests that the proposed method is applicable across various underwater scenarios, especially when the mode
coupling effect is not the predominant factor influencing sound propagation.

The computation time for this case is approximately 14 s, longer than the previous case. This increase is due to
the higher frequency and vertical mode numbers. Nevertheless, it remains acceptable and sufficiently fast for tackling
large-scale 3D problems. It is worth noting that the computation time for the longitudinally invariant finite element
model in this case, involving the evaluation of the cosine transform along the out-of-plane wavenumbers with 3072
points, is about 8 hours and 30 minutes.

3.3. Fully three-dimensional environments
3.3.1. Case 1: Corrugated seabed

In this section, we consider fully 3D underwater environments. The first example illustrates shallow water
overlaying a corrugated seabed described by:
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Table 2
Parameters of the fully 3D shallow-water environments in the simulations.

Parameter Case 1: Corrugated seabed Case 2: Realistic sandbar
Computational frequency 50 Hz 125 Hz

Computational domain size 8 km × 8 km × 150 m 4 km × 3 km × 150 m
Seabed sound speed 2000 m/s 1700 m/s

Seabed sound attenuation 0.0 dB/𝜆 0.5 dB/𝜆
Seabed density 2000 kg/m3 1500 kg/m3

Numbers of vertical modes 6 10
Computation time 18 mins 37 mins

Figure 14: A schematic of the simulation setup for a corrugated seabed.

𝑧𝑠𝑓 (𝑥, 𝑦) = 90 + sin 2𝜋𝑥
4000

tan 0.5◦(𝑦 − 𝑦𝑠). (34)

Table 2 summarizes the corresponding seabed parameters. The source position is (0 km, 4 km, 10 m), with a
frequency of 50 Hz. The simulation configuration is depicted in Fig. 14. Under this excitation, four vertical modes
act as propagating modes. We include two additional vertical leaky modes in the computation to achieve convergent
results. Sound propagation over the corrugated seabed is primarily influenced by horizontal refraction, with relatively
weak mode coupling effects. These aspects will be further discussed in the subsequent analysis by comparison with a
full-wave FDM [4]. The step size Δ𝑥 is set to be a default value of 𝜆 unless specified.

Figure 15 reproduces the TL contours given by Liu et al. [4] using the proposed model in the horizontal plane
at 𝑧 = 10 m. Overall, the TL predicted by the proposed model closely approximates the full-wave FDM result. The
latter exhibits slightly oscillatory contours of TL in the deep region due to weak mode coupling effects, which are
absent in the current model. However, the sound propagation is primarily influenced by horizontal refraction from
the corrugated seabed rather than modal interactions. The proposed model demonstrates promising results under such
fully 3D circumstances. This is further supported by TL comparisons with the full-wave FDM along the 𝑦 = 𝑦𝑠 axis
at a receiver depth of 10 m (see Fig. 16), with root mean square errors barely exceeding 1 dB.

Next, we compare the sound field computed using different grids. Four discretization schemes are considered:
Δ𝑥 = 2𝜆, Δ𝑥 = 𝜆, Δ𝑥 = 𝜆∕2, and Δ𝑥 = 𝜆∕4, respectively. The TLs along 𝑦 = 2 km are provided in this case, as
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Figure 15: TL contours in the ocean overlaying the corrugated seafloor. The results are given in the horizontal plane at
𝑧 = 10 m at 50 Hz and calculated using the proposed method.
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Figure 16: A comparison of the TL with the full-wave FDM (the solid red circles) in the 𝑦 = 𝑦𝑠 plane at a receiver depth
of 𝑧 = 10 m. This is a reproduction of Fig. 15 from Liu et al. [4]. The results are given for the corrugated seafloor case.

shown in Fig. 17. Even at a very coarse grid with Δ𝑥 = 2𝜆, one can indeed observe that the TL predicted by our
method closely matches the result obtained with the finest grid. This highlights another advantageous aspect of our
technique: it enables efficient solutions on a coarser grid without compromising accuracy. To prevent the occurrence
of unconvergent solutions in extreme scenarios, we recommend Δ𝑥 = 𝜆 for optimal balance between accuracy and
efficiency.

To analyze the sound propagation further, Fig. 18 illustrates the coefficients of the first five vertical modes. It is
evident that the first three modes are minimally affected by the topography, while mode 4 exhibits significant horizontal
refraction due to the corrugated seabed. Although mode 5 also experiences refraction, it decays exponentially with
range owing to its leaky characteristics. This analysis suggests that, in this case, mode 4 dominates the 3D propagation
effect. Notably, the current analysis does not consider mode coupling effects, which typically involve energy transfer
between low- and high-order modes. For instance, the oscillatory contour observed in the deep region may result from
the emergence of high-order modes, where energy is transferred from low-order modes as sound propagates from
shallow to deep water. The computation time for this case is 18 minutes. While slower than longitudinally invariant
cases, this duration remains acceptable for large-scale 3D underwater acoustic simulations.
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Figure 17: A comparison of the TL along y=2km, computed using different grids along the 𝑥− axis. The results are given
for the corrugated seafloor case.

Figure 18: Modal coefficients of the first five vertical modes in the 𝑧 = 10 m horizontal plane at 50 Hz. The results are
given for the corrugated seabed case.

3.3.2. Case 2: Realistic sandbar
To further demonstrate the capability of the proposed method to model sound propagation associated with intricate

topographies, we present a simulation using the bathymetry data of Long Island Sound on the eastern coast of the
United States [60] as an illustrative example. The topography in this region exhibits significant variability and strong
range dependence, which can potentially induce notable 3D effects even at short distances. As shown in Fig. 19(a),
we derived the bathymetric dataset from the National Oceanic and Atmospheric Administration (NOAA) dataset [61].
More specifically, as shown in Fig. 19(b), we extracted a localized topography for the subsequent simulations. The
selected topography is from 41.24◦N to 41.21◦N in latitude and from 72.1◦W to 72.04◦W in longitude, resulting in an
actual area of 3.33 km by 3.76 km. In our simulation setup, the sound source is positioned at coordinates (0 m, 500 m,
−60 m), as marked in Fig. 19(b). Table 2 summarizes the corresponding environment parameters.

The sound propagation calculated by the full-wave, pre-corrected fast Fourier transform accelerated ESM [6] and
the proposed model is presented in Fig. 20 at a receiver depth of 20 m and shows conspicuous 3D effects including
horizontal scattering, refraction, and diffraction, particularly in the vicinity of the sandbar region. Indeed, one can
observe that the adiabatic approximation provided by the proposed model approaches the full-wave solution in most
regions where horizontal refraction dominates the 3D effect. Overall, the proposed model predicts acceptable and
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(a)  Montauk 1/3 arc-second DEM (b) Local topography

Figure 19: (a) The shallow water environment of Long Island Sound, with a bathymetric model constructed using the
Montauk, New York 1/3 arcsecond digital elevation model from the NOAA dataset. (b) The local topography used in the
underwater sound propagation simulations; the red star indicates the horizontal position of the sound source.

Table 3
CPU time and error analyses for the proposed MOR technique compared with the full-order model. The front annotated
in red represents the time for mesh construction.

Test case CPU time Relative errorsfull-order FEM MOR model
ASA wedge 8mins (6mins) 0.15s 0.97%

Infinite cosine hill 8h 9 mins (3h 1min) 2.8s 1.68%
Corrugated seabed 19mins 27s (8mins 7s) 3mins 20s 2.58%
Realistic sandbar 17mins 53s (7mins 23s) 4mins 1.73%

promising results in terms of the energy distribution compared with the full-wave solution, with the overall errors
plotted in the lower panel barely exceeding 5dB over the range where horizontal refraction dominates. In the region
where modal coupling is significant, it overlooks the oscillatory contour induced by the intricate mechanism of the
modal energy transfer, thus showing larger errors up to 10dB. However, this does not reflect any underlying issue
associated with the proposed MOR technique for solving the HRE, and the differences from the full-wave solution are
solely caused by the adiabatic approximation. Note that noticeable errors exceeding 20 dB appear over the range where
troughs in the sound field occur, which cannot be attributed to the adiabatic approximation.

3.4. Comparison with a full-order model for solving HREs
To assess the efficiency achieved by the proposed MOR technique, it is necessary to compare it with a full-order

model. However, it’s worth noting that, to the best of the authors knowledge, there is currently no full-order solver
available for HREs. Historically, HREs have been tackled either through ray tracing or parabolic equation, neither of
which constitutes a full-order model. Ray tracing provides a high-order asymptotic solution for Helmholtz-like HREs,
while parabolic equation solves the paraxial form of HREs rather than the HREs themselves.

Here, we present a full-order model for solving HREs using the FEM. A detailed description of this model is
provided in Appendix A.2. The developed full-order FEM serves as a benchmark for comparing other methods used to
solve HREs as well. For efficiency, only individual coefficient of the vertical mode is considered for each test case. Table
3 presents the CPU time and error analyses compared with the full-order FEM for the coefficient of the first vertical
mode. The results demonstrate that the proposed MOR technique is exceptionally efficient in the ASA wedge case and
the infinite cosine hill case, particularly due to their longitudinal invariance, being over a thousand times faster than
the full-order FEM. The significantly longer computation time required by the full-order FEM in the infinite cosine hill
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Figure 20: TL contours in the ocean overlaying the local topography given in Fig. 19 (b), with a receiver depth of 20 m .
The upper and middle rows show the results computed by the full-wave PFFT-ESM and the proposed model, respectively.
The lower row give the errors between these two models.

case is attributed to the mesh count exceeding 5 × 107. Even in fully 3D cases, the proposed MOR technique remains
5-6 times faster than the full-order FEM. Overall, the errors relative to the full-order FEM are below 3%, indicating a
significant speed-up achieved by the MOR technique without compromising accuracy.

4. Concluding remarks
This paper has presented an MOR technique designed to solve the HREs governing large-scale 3D underwater

acoustic propagation. This technique projects the exact solution of the HRE onto a lower-dimensional space to reduce
computational costs. Drawing inspiration from normal mode theory, we utilized the transverse eigenfunctions of the
coefficients in the expansion over vertical modes to define this reduced space. Consequently, the original model,
initially defined by discretization points along the transverse direction, is simplified into a lower-dimensional model
based on transverse eigenfunctions. To address the corresponding eigenproblem, we incorporated two PMLs into the
model to truncate the transverse directions of the horizontal domain. Subsequently, the transverse eigenfunctions were
projected onto the space bounded by the outer PML boundaries. This projection yielded a closed generalized matrix
eigenproblem, facilitating accurate determination of the corresponding eigenvalues and enabling wide-angle horizontal
propagation angles covering ±90◦.

Longitudinally invariant environments exhibit a variably separative nature in which the HREs remain uncoupled
for each transverse eigenfunction of the coefficients of vertical modes. This characteristic enables the simultaneous
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computation of modal coefficients across different 𝑥 and 𝑦 coordinates by solving the associated eigenproblem just
once. Such efficiency renders the proposed MOR technique particularly effective in longitudinally invariant settings.
Comparative analysis demonstrates that our MOR technique surpasses the state-of-the-art wide-angle mode parabolic
equation, offering over 100 times faster computation and a broader angle solution. We validated the proposed MOR
technique and investigated mode coupling effects in two longitudinally invariant scenarios: the ASA benchmark wedge
and the infinite cosine hill.

We extended our MOR technique to fully 3D underwater scenarios by introducing an admittance matrix. This
matrix was derived by formulating the HRE as a first-order evolution equation along the longitudinal range. Because
horizontal wavenumbers depend on both the transverse and longitudinal ranges, the transverse eigenfunctions of modal
coefficients become coupled. We addressed the coupled transverse eigenfunctions using an evolutionary Magnus
scheme, a memory-saving strategy that prevents numerical overflow when the longitudinal range is large. Two fully 3D
examples were used to validate the proposed MOR technique, including sound propagation over a corrugated seabed
and realistic topography acquired from NOAA data. The proposed model enables efficient solutions on a coarse grid
without compromising accuracy for fully 3D problems. While this article primarily focuses on solving HREs without
modal interactions, it’s worth noting that the proposed MOR technique could also serve as a MOR of the parabolic
equation modal coupled system for 3D sound propagation[62], which will be the focus of our future work.
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A. Appendix
A.1. Newton-Raphson iteration for determining eigenvalues of waterborne modes in a Pekeris

waveguide
In a Pekeris waveguide, where a system of a two-layer fluid medium is considered, the dispersion equation to be

solved is given by:

tan 𝛾1𝐻 = i
𝛾1

𝑏12𝛾2
, (35)

where 𝐻 is the water depth, 𝑏12 represents the density ratio of the water to the seabed, 𝛾1 =
√

𝑘21 − 𝑘2𝑟 , and

𝛾2 =
√

𝑘22 − 𝑘2𝑟 , where 𝑘1 and 𝑘2 are the wavenumber of the water and seabed, respectively. The dispersion equation
can be expressed by:

𝛾1𝑗𝐻 = 𝑗𝜋 + tan−1
[

i
𝛾1𝑗

𝑏12𝛾2𝑗

]
. (36)

Writing 𝛾2𝑗 in terms of 𝛾𝑖𝑗 gives:

𝛾2𝑗 = −i
√

𝑘21 − 𝑘22 − 𝛾21𝑗 . (37)

Returning Eq.(36), one can rewrite the equation to be solved as:

𝐹 (𝑋) = 𝑋 − (𝑗 − 0.5)𝜋 − tan−1[𝑔(𝑋)], (38)
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where

𝑋 = 𝛾1𝑗𝐻,

𝑔(𝑋) = 𝑏12

√
�̂� −𝑋2

𝑋
,

(39)

and

�̂� = (𝑘21 − 𝑘22)𝐻
2. (40)

The derivative of 𝐹 can be given by:

d𝐹
d𝑋

= 1 + 1
(1 + 𝑔2)𝑋

[
𝑔 +

𝑏212
𝑔

]
. (41)

Then, approximating the 𝑗th root as 𝑋𝑗 yields:

𝑋𝑗+1 = 𝑋𝑗 −
𝐹 (𝑋𝑗)
𝐹 ′(𝑋𝑗)

. (42)

Eq.(42) exhibits a rapid convergence just a few iterations to the solution, with an initial value of 𝑋0 = (𝑗 − 0.5)𝜋.
The eigenvalues of waterborne modes then can be calculated quite straightforwardly once 𝛾1𝑗 are solved through the
above iterative procedure, and that is:

𝑘𝑟𝑗 =
√

𝑘21 − 𝛾21𝑗 . (43)

After determining the eigenvalues, the mode shape function can be computed analytically using a the complex
depth approximation:

𝑃𝑗(𝑧) = 𝐿−1
𝑗 sin(𝛾1𝑗𝑧). (44)

where

𝐿𝑗 =
𝐻𝑒
2

−
sin(2𝛾1𝑗𝐻𝑒)

4𝛾1𝑗
+ 𝑏12

sin(𝛾1𝑗𝐻𝑒)2

2𝛾2𝑗
, (45)

with 𝐻𝑒 = 𝑗𝜋∕𝛾1𝑗 .

A.2. Full-order finite element method for solving horizontal refraction equations
The fundamental approach involves discretizing the same computational domain treated in our MOR technique

using free triangular meshes and solving the corresponding HREs using a 2D FEM scheme. The FEM solver was
implemented using the commercial package COMSOL Multiphysics, employing a 2D frequency-domain solver for
pressure acoustics. The modal horizontal wavenumbers 𝑘𝑟𝑗 are pre-computed and then utilized as input for the FEM-
based HREs solver. The point-source excitation is imposed using the line source condition in the 2D pressure acoustics
module. The discretization scheme in the FEM ensures a minimal mesh size of 𝜆∕5, with a mesh density ten times
higher at the source. Additionally, four PMLs are implemented to truncate both the 𝑥 and 𝑦 directions, each with a
thickness of 5𝜆 and discretized by 10 layers of mapping mesh, guaranteeing convergence of FEM results. Figure. 21
illustrates the schematic of the full-order FEM implemented using the commercial software COMSOL.
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